NOAO DPP Document PL0O01

The NOAO High-Performance Pipeline System

F. Valdeg, T. Cliné', F. Pierfederid, B. Thomas, M. Miller?, R. Swaters

National Optical Astronomy Observatory
Data Products Program

October 12, 2006

'NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732
2NOAO LSST Program, P.O. Box 26732, Tucson, AZ 85732

3Department of Astronomy, University of Maryland, Collegarl, MD 20742

Copyright(© 2007 by the authors.

NOAO Pipeline System PLOO1

Table of Contents

1 Introduction 2
2 Pipeline Applications 3
3 NHPPS Core System 4
3.1 MeSSaging i e e 5
3.2 Directory Server. e 5
3.2.1 Externally Callable Methods, 6
3.3 NodeManager e 6
3.3.1 Externally Callable Methods, 6
3.4 PipelineManager e 7
3.41 ModuleManager e 7
3.4.2 Scheduling 9
3.4.3 Blackboards. e 9
3.5 Pipeline SelectionUtility 10
3.6 NHPPShostcommands. 10
3.7 Pipeline Description Language e e e 11
3.7.1 Settings e e 11
3.7.2 ACliONS e 12
3.7.3 Events. 12
3.7.4 ApplicationLevel 13
3.7.5 PipelineLevel 31
3.7.6 ModuleLevel 13
3.8 Performance e 13
4 NHPPS Optional Components 13
4.1 DataManager e e e e 15
4.1.1 Pipeline Metadata Archive System 15
4.1.2 CalibrationLibrary e 15
4.1.3 Externally Callable Methods 16
4.2 PipelineMonitor e e e 17
4.3 Message Monitor e e e 18
4.4 Switchboard Server e 18
5 Implementation 18

NOAO Pipeline System PLOO1

Abstract

The NOAO High-Performance Pipeline System (NHPPS) is antesgven, multiprocess ex-
ecutor system developed to manage pipeline applicatioasoarse-grained, distributed process-
ing environment. It allows easy creation of distributed gadallelized data processing pipelines
on a cluster of standard workstations using conventionat-ballable programs or Python plu-
gin methods. High performance is achieved by enabling pialforocesses to run concurrently
to minimize system idle time and by utilizing a cluster of ggesing nodes to cooperatively dis-
tribute pipeline steps and portions of datasets for pdgaiteessing. In addition to the core system
we describe optional infrastructure components that watk the core system and with pipeline

applications.

Keywords: mosaic pipeline, operator

NOAO Pipeline System PLOO1

1 Introduction

High performance pipelines are becoming a necessity fadlirapnthe large data rates from current
and future astronomical instruments. Examples from ofaticaging are the many mega- and giga-
pixel CCD cameras in use (NOAO: Muller, 1998; CFH: Boulad#)2 MMT: McLeod, 2000) or
under development (ODI: Jacoby, 2002; DEC: Wester, 2008:FARRS: Kaiser, 2002; LSST:
Tyson, 2002). Not only are images large but the observingmesgs can be on the order of an
exposure every few seconds. For this type of observatiatallthndling, pipeline systems tend to
be 1/0 bound. Therefore, to maximize CPU usage pipelineegystmust employ coarse-grained
parallization of both the data and processing.

Coarse-grained data parallelization divides up the datachunks that can be processed at
the same time. Astronomical imaging datasets are weledud data parallelization because they
may be easily split into smaller sub-images, each of whiehlm distributed for processing to
any one of a number of nodes within a processing cluster. evaing data parallelization requires
specific design on the part of pipeline architects to ensoaé their pipeline applications split
large datasets to take advantage of distributed processsagirces while minimizing the impact
of slower network bandwidth. A caveat is that some procgssteps are not completely data
parallel because of the need to avoid boundary artifacteaadre global continuity.

Coarse-grained process parallelization, meaning pérallon at the level of individual pro-
grams, keeps CPUs busy while I/O is taking place by perfognmtultiple processing steps in
parallel. An advantage of coarse-grained process paralleln is that modern, general purpose,
operating systems are designed to multi-task efficienthyipied there are a reasonable number of
processes active at the same time. This avoids the need feraamplex multi-threaded program-
ming and special operating systems. It also allows use oferdional data processing programs,
often from legacy systems.

We have developed a pipeline infrastructure, called the R®Kgh-Performance Pipeline Sys-
tem (NHPPS), for creating pipelines which use these pdirteon techniques. The system is
based on an event-driven methodology.

An event-driven pipeline works as follows. A pipeline, byfidaion, “flows” data through a
number of processing steps. Each step has some associatgdvadch is typically, though not
necessarily, a program. Some steps need to be performecdemaincorder, some are conditional
on the results of other steps, and some may be performedafiglavith other steps. Rather than
writing down the chain of steps as a sequence with control flemstructs, such as the “if/else” in
a scripting-style pipeline, an event-driven pipeline odgscribes the prerequisite events for each
step to be performed. The most common prerequisite is theletion of another step, though
there are many other types of possible prerequisites. Theadlow in this methodology is
implicit in the set of prerequisites for each step.

An event-driven approach has many advantages over a sé&jwerd for describing a pipeline.
The principle advantage is that parallel steps follow retwurn fact, the order in which the steps
are described is not significant, except as a general aidderatanding the expected data flow, so
adding or removing steps is relatively easy. Another keyaathge is that events can be generated
externally; that is, the description does not have to ineleadplicit information about how the

NOAO Pipeline System PLOO1

events are generated.

The NHPPS currently includes the following types of evettis: exit status of an action (typi-
cally the exit code from a completed program), the state ¢gfiramemaory) blackboard, the creation
of a (trigger) file, the passage of some amount of clock time, the the occurrence of specific
clock times. Support for additional types of events coukllgde added; however, we have found
these to be sufficient to allow creation of complex distrdalidnd parallelized pipelines.

Two useful characteristics of an event-driven system aaé tthe events control the flow of
execution and that the events may be generated in a varietiays. Pipeline steps can control
their exit status values, create files, and modify the blaakth while operators or non-pipeline
programs can create files or modify the blackboard througdmicprograms. This provides the
pipeline operator the capability to directly impact and tcohthe pipeline application, or choose
to let it run autonomously.

The NHPPS draws on the event methodologies from the OPUdir@pmanagement system
(Rose, 1995) developed at the Space Telescope Sciendatimatid used by a number of projects.
We have expanded and improved on these methodologies in ways. Two key areas are 1)
using a Pipeline Description Language (PDL) in a single &lder than a set of configuration files
and 2) a lighter weight event handling implementation whishs one process for a pipeline rather
than, typically, one for each step in the pipeline.

In this paper we describe the elements of the NHPPS corensyete optional components
which work with the core system to build and operate pipedipglications. The core components
are a Directory Server, Node Manager, Pipeline Manager, Woanager, and a Blackboard
system. We also describe clients, server methods, and anbaged PDL that control or interact
with these components. These elements are sufficient temmgait a high performance pipeline
application.

2 Pipeline Applications

As with any complex programming problem, developing a nonat pipeline application ben-
efits from the programming concepts of modularity and endagisn. In our pipeline applica-
tions we decompose the data flow not only into process legpkdbut also into multiple, higher
level, interacting pipelines. This is why we make the digiion between aipeline application
and apipeline. The NHPPS was designed to support pipeline applicatiomadayaging multiple
pipelines distributed across multiple nodes.

Higher level pipelines break down a pipeline applicatiotoia number of logical units that
interact with each other through standard protocols and haited functions, for example creat-
ing a calibration or other data product. These pipelinesastogous to methods or subroutines in
programming languages while the steps in the pipelinedarprogramming statements. The stan-
dard protocols for connecting these pipelines are thervabpuit to the way methods or subroutines
call each other.

This approach has a number of advantages. Firstis the redwétcomplexity in implementing
each high level function. Another is the ability to extend thinctionality of a pipeline applica-

NOAO Pipeline System PLOO1

CPU Control CPU
/ \
Node Manager Node Manager
Pipeline Manager [}, Directory Pipeline Manager [},

| Server |

[Blackboards Blackboards |

Module Blackboard Module
Manager { Sharing Layer Manager
R »
T \§ d T
Data
Manager

Figure 1: NHPPS Architecture components.

tion by adding new pipelines with the desired capabilitidsless obvious, though significant,
advantage is the flexibility this decomposition providesl@ploying work within a cluster of ma-
chines. Depending on the context, such as processing meuttyposures in parallel as opposed
to processing multiple pieces of an exposure in parallet, @m optimize the utilization of the
individual nodes for a particular purpose by controllingierhpipelines are run on which nodes.
This is a key concept behind the way the NHPPS supports rfufipelines. It does not, how-
ever, provide a particular protocol or convention for how ghpelines interact. An example of a
real pipeline application, including example protocolsviayich pipelines interact, is the NOAO
Mosaic Camera Pipeline described by Swaters (2007) ance¥gRD07Db).

3 NHPPS Core System

The NOAO High Performance System architecture consists Diractory Server (DS) for a
pipeline cluster, a Node Manager (NM) for each pipeline na®ipeline Manager (PM) for
each pipeline on each node, a distributed Blackboard syfsteeach pipeline, a Module Manager
(MM) for each instance of each module in each pipeline, amdrobclients that interact with the
system. Figure 1 illustrates this architecture and the comaation connections. In this section
we describe these architecture elements.

The NHPPS is able to distribute work across several machsa#ied nodes, within a processing
cluster. In order to facilitate this, one node within thestkr runs a resource discovery server,
called the Directory Server (DS), and all nodes in the cluste a node management server, called
the Node Manager (NM). Each NM contacts the DS and tells it the node is available for
processing. When data is being prepared for processinggrd programpi pesel ect , queries
the DS to determine which nodes are available, then deteswihich of those nodes will be given
the processing task.

NOAO Pipeline System PLOO1

There is nothing in the logic of the NHPPS that requires mioas tone node. In this case, one
can optionally eliminate the directory server and, in fédte pipeline application is run without
starting the DS then it will automatically be confined to agggnode. On the other hand, the DS
allows new nodes to be added to a running pipeline with autiemesource discovery. Eliminating
a node during execution works the same way but designingpledie application is more difficult
because partial results and data may reside on the nodeas®s of gradually shutting down an
active node, operation protocols can be used to allow thsippen automatically.

The NHPPS may be run on a single machine, however it was dasigrrun on a multi-node
processing cluster. Each node within the cluster runs a Ntadeager and various pipelines within
the Pipeline Application. It is important to note that ndt@pelines in a pipeline application have
to run on every node. In addition, there are components tio&ige services to the cluster. These
are the Directory Server and, if used by the pipeline apptioathe Data Manager. The nodes and
servers communicate with each other through sockets oughran RPC layer. In this section we
discuss these components of the NHPPS, their socket meggagtocol, the Pipeline Description
Language, and utilities which provide external interfaces

3.1 Messaging

Our server components primarily communicate through a e@otiwnal socket interface. In our
implementation the ports are externally configurable tglouser environment variables. This
allows different users to develop and run pipelines on theesaachines without conflict by simply
assigning different values for the port variables. The pariables include both the host node and
the port number so that the servers which serve a clustdn, asithe DS and DM, can be easily
changed. This is a feature which also allows easily excimanitie roles of cluster nodes when the
cluster composition changes due to failure, removal, oitimhdof hardware.

One design decision we made for our high-level server compizrwas to use a simple, ASCII-
based messaging protocol layered on standard socketsrdtoe@ uses new-line delimited “key-
word equal value” elements. The allowed keywords and vaneslefined for each type of mes-
sage and server. There are a few reserved system class kisytvat are available to all the servers.
The most important of these is the COMMAND keyword which isdiso call methods in the ad-
dressed server. In later sections we list the server metlvbdse names are the value string sent
to the particular server with the COMMAND keyword.

This protocol was selected for its ease of implementationgugext formatting and parsing
routines found in common programming languages, allonhegtotocol to be used across various
languages. An added benefit is that this ASCIl-based pro#@ilmavs an operator or programmer
to monitor or debug the servers easily by sending and rewgpackets using a terminal-based
program such as telnet.

3.2 Directory Server

The Directory Server (DS) is responsible for maintainingtdf the nodes running the NM within
a processing cluster. The NMs occasionally need to determinch nodes are in the processing

5

NOAO Pipeline System PLOO1

cluster and this list is sent to the NM when requested. Natettie DS is not a communication
intermediary. The NMs communicate with each other diret¢tlg DS simply provides a registry
service.

3.2.1 Externally Callable Methods

getlist, getlist_user, getlist_host are used to get the complete lists of all nodes in the pipeline
cluster, all nodes with a NM running as a specific user, or MlsNunning on a specific node.

add_user_host, deluser_host are used to register and de-register NMs with a DS.

3.3 Node Manager

The Node Manager (NM) is primarily responsible for starfipgusing, resuming, and stopping
pipelines. Additional tasks include tracking availableaerces on a node, and communicating
with the Directory Server (DS) to locate other available NMthin the pipeline processing cluster.

A NM is started on each node which is a member of the pipelioegssing cluster on which
the pipeline application is run. At startup, the NM contatiis DS to register itself as available
for processing datasets. Note, this requires the DS to bamgrirst. If no DS is running then
the node will be unaware of other processing nodes, howerey still run a pipeline application
restricted to a single machine.

To start a pipeline, the NM is sent a message from a clientrprogwe have providedunpi pe
for this purpose, specifying a list of XML files which des@ithe pipelines to run and the number
of instances of a pipeline to allow to run at a time. The NM, byention, searches a directory
specified by an environment variable for the PDL XML files amderstands that the files will end
in. xm . Therefore it is convenient to name the PDL files by the pipetiame. Doing so reduces
running the pipeline to executing theinpi pe command providing the desired pipeline names as
arguments.

3.3.1 Externally Callable Methods

The NM, being one of the NHPPS servers, responds to messdjasadhere to the communica-
tion protocol described in 3.1. When the request includ€&MBMAND=method’ the NM executes
the correspondingrethod below, returning its result to the caller.

start_pipe, stoppipe start and stop Pipeline Managers on the node.
halt_pipe, steppipe, resumepipes control the state of execution of pipelines on the node.
getload returns the CPU load on the node.

getdir returns the ‘data’ directory on the node for a given pipelared optionally the amount of
free disk space in that directory as well.

NOAO Pipeline System PLOO1

get. OpenDatasetCountpipes gets the number of open datasets being processed undevéme gi
pipeline(s).

get.queue returns the number of datasets pending for processing agivhe pipeline(s).
getnode list returns a list of nodes in the pipeline cluster from the Ciweg Server.
test osf returns a list of blackboard entries on the node.

cleanup.osf, cleanuppstat are used to scrub clean the osf and pstat blackboards.

3.4 Pipeline Manager

The heart of the NHPPS is the Pipeline Manager (PM). In thititecture, each pipeline in a
pipeline application has a corresponding PM on each nodeuha the pipeline. The ability to
control the number and location of pipeline instances isyafkature of our high-performance,
distributed and parallel system. It is intuitive that imstas of a pipeline running on multiple
nodes provide distributed processing. What is less obvi®ukat running multiple instances,
meaning multiple instances of each module in the pipelinghe same node allows more efficient
utilization of nodes with multiple CPUs for essentially g@me reasons as with multiple machines.

Control of the number and location of pipeline instancewvioles the flexibility to customize a
pipeline application to the problem and computing resasirb@some cases a pipeline performing
a high-level function, such as organizing many night's Wwant data into datasets based on filter
and night, needs only one instance on one node. In other eapgsline performing a data
parallel function, such as processing a single piece ofgetaiormat exposure, would have as
many instances as there are pieces of the exposure or deaitates.

The PM is primarily responsible for parsing its pipelineBLFfile, setting up Module Managers
for each Module in the pipeline, providing scheduling gmicia to the Module Managers (MM),
and creating shared Blackboards. The Module Manger is itbescin a following section but in
outline it is responsible for a single pipeline stage. Aretturally we are describing a MM as a
separate logical component. However, the PM operates agke girocess, internally managing
‘micro-threads’ corresponding to instances of the Modulaniigers. These ‘micro-threads’ do
not have significant context switch overhead. They theeeftor not consume operating system
resources, increasing the overall efficiency of the system.

A mentioned in the introduction, this micro-thread impleartaion for the MM is a key im-
provement over OPUS (Rose, 1995). In OPUS the equivaleriiteoMM is implemented as a
separate polling process resulting in a potentially langmloer of processes. This is undesirable
because the process table can become unmanageably lareeangrhead in context switches
can become significant.

3.4.1 Module Manager

Each instance of a Module within a pipeline has an associsltedule Manager (MM) which
performs two key tasks 1) checking that the events necedsamhe Module to execute have

NOAO Pipeline System PLOO1

occurred and 2) setting the environment and executing théulds actions when the required
events have occurred. The MMs operate concurrently. Thexeall modules whose events are
satisfied will initiate their associated actions and waittfeir completion without blocking other

MMs. This provides the desired coarse-grained paralletgssing of different steps within a
pipeline.

In data parallel processing it is common for the steps to mmeceynchronized such that dif-
ferent datasets will be in the same processing stage at the sae on the same machine. We
therefore allow multiple MMs, called instances, for eachdure in a pipeline. By providing mul-
tiple instances, we typically use one instance per CPU dddna dual-CPU machine there are
two instances, we find that the CPUs are best utilized withmahidle time.

For the pipeline architect the main function of the MM is teente a desired action which is
typically a program. The program may be specific to a singldutebut often is more generic. In
either case the program needs context information wherritns The module manager provides
this in two ways. Programs may be called with arguments,iBpedn the pipeline description
language (PDL), and the MM supplies the command-line arguisnghen executing the program,
translating any logical variables first. The MM also sets mhar of standard environment vari-
ables which the program can then access. These includetdsetiaame or identifier, the pipeline
name, the module name, the type of event, the module’s bieckiflag when it is triggered, the
start time, the process identification, and logical dirgaegassociated with the pipeline.

The basic functionality of the MM is implemented as a ger@réinction; a programming
technique where a function can return control to the calher #lhen be continued from where it
left off. This means that, coupled with an appropriate salied service, Module Managers act
as lightweight, micro-threads. The benefits of using gapnerainctions are that they maintain
their state between calls, return, yeld, at various points during execution and resume where
processing left off the next time they are called. Additibpnahey are run within the process space
of the caller, in this case the PM, so they do not incur any atpeg system threading overhead.

The MM is particularly suited to a generator function aswe primary responsibilities may be
broken into 4 distinct tasks which must be executed in sexpieh) check the prerequisite events,
2) perform optional setup actions, 3) execute the primatipacand 4) perform optional cleanup
actions, which leads to the the logical structure shown uré&g.

Each time the un function is called, it executes until it reacheyiael d statement. At that
point, it returns to the caller. On subsequent callsrthe function starts execution immediately
following theyi el d statement it ended with during the previous call.

Ther un function returns a value, to the caller when it encounters theel d statement. This
value is a fraction of a second the MM wishes to be inactiveteeégain beingr'un’. Typically,
if the module’s events have occurred, the valuXefill be 0, meaning that the MM wishes to be
r un again as soon as possible to process a dataset. However nfdtule’s prerequisite events
have not occurred, then the MM will more likely request sometto ‘sleep’ before checking the
status of its prerequisite events again.

NOAO Pipeline System PLOO1

Figure 2: Pseudo-code for a MM generator function.

def run():
whil e True:

if eventsCccurred():
runSet up()
yield X
runPrimary()
yield X
runC eanup()

yield X

3.4.2 Scheduling

As previously mentioned, one of the tasks of the PM is to mlewicheduling services to the MMs.
In other words, the PM is responsible for calling then function within each MM to ensure that
the MMs which are not processing a dataset are checkingahessif their prerequisite events, and
the ones which are processing a dataset are performingstteip, primary, and cleanup actions.

The scheduling component within the PM keeps track of thegithe un function in each MM
was last called. The scheduling mechanism continuousjydaeer each MM in the PM, compar-
ing the difference between the time it was lasih’ and the current time with the requested sleep
time. If the difference is greater than the sleep time, thesviMn function is called, otherwise it
is skipped.

After checking all of the MMs and running them as appropridéibe scheduling mechanism
goes to sleep for a small period of time between loop itenatid he amount of time is configurable
through the pipeline description language.

3.4.3 Blackboards

Blackboards store messages posted by the MMs. These messaygée requests for other MMs
to begin processing data, status of current dataset pingess even the status of the MM itself.
Blackboards are visible tall of the MMs in the pipeline, and therefore MMs are able to, and d
‘communicate’ with each other by posting and reading me=sag the blackboards.

The PM creates two distinct blackboards in memory, which ogionally be mirrored on disk.
These two blackboards track 1) the progress of individuts#ds through the pipeline and 2) the
status of pipeline modules to include, among other thindsgther they are active or inactive,
which dataset they are processing, and when they begansginge

As we have mentioned, these blackboards are shared amouoigtiadd MMs in the PM. This
allows each module to check the status of the other modulkéipipeline.

Another function of the blackboard is to broadcast changesugh a socket, the host and port
of which are defined in the environment. It is not an error & gockets host and port are not

NOAO Pipeline System PLOO1

defined or if there is no client listening to the socket. Thanes optional clients may be written to
respond to blackboard events. There is currently one sigipldine monitor client which can be
connected directly to these messages or through a mulitigieerver. These optional components
are described i§4.2 andi4.4.

3.5 Pipeline Selection Utility

The pipeline selection utilitypi pesel ect , is a key tool in building distributed pipeline applica-
tions. The purpose of this utility is to discover availabiegdines, rank their resources, and provide
trigger information.

A module in one pipeline in one pipeline that wishes to triggeother pipeline must first
discover the instances of the pipeline. It specifies the nafhtbe desired pipeline, whether a
list of the available pipelines is to be returned or a rankstdfér a desired number of instances,
and the required disk space available to the pipeline. Intiaddto the arguments, the utility
uses a configuration file that currently defines whether aelégipeline may be anywhere in the
processing cluster, must be on the same node as the calialjng, or must be on any node other
than the local node.

pi pesel ect contacts the local NM and requests a list of all the node mensai knows
about. Normally the NM checks with the DS. Then using therimiation from the configuration
file it contacts the potential NMs to find if they are running tthesired pipeline. If a minimum
disk space requirement is specified the list is limited tséwodes meeting the requirement. The
trigger information for the pipeline consists of a diregtpath (in a network syntax) where a file
trigger event may be created.

If a ranked list of a certain number of pipeline instancesgiestegi pesel ect additionally
filters the results based on the “load” of each pipeline. Tleasare of “load” is currently the
number of “open” datasets in the pipeline. The list is theseoed from lowest to highest “load”
and nodes with the same “load” are randomly shuffled. Themetllist will then be as many
trigger directories as the number of instances requested.

3.6 NHPPS host commands

The NHPPS provides an assortment of commands to begin,otoatrd end the execution of
pipeline applications. The most important are outlineabel

plrun high level command to start a particular pipeline configorat
plstatus reports the status of nodes, node managers, and pipelines.
pltest high level command to run a pipeline regression test.

plssh execute a pipeline command on all pipeline nodes.

servers starts the servers (NM, DS, etc...).

runpipe starts PMs for the specified pipelines.

10

NOAO Pipeline System PLOO1

osf halt causes the pipeline to stop responding to triggering events

osf.resume resumes normal pipeline activity after calls to eitbef _hal t orosf _st ep.
osf step executes a single module of the pipeline.

osf test lists the contents of the blackboard.

osf.update sets the status flag for a blackboard entry.

stopall kills all pipeline related processes on the local node.

stoppipe stops PMs of given pipelines.

stopserver Kills servers (NM, DS, etc...).

pipeselectperforms load-balancing while determining which nodesusthprocess datasets. pro-
cesses.

3.7 Pipeline Description Language

The Pipeline Description Language (PDL) is used to defingtpelines which create a pipeline
application. Itis implemented as an XML grammar. The largguia specialized for describing the
coarse-grained, event-driven logic discussed earligs [Bhguage is one significant improvement
we have made over the earlier OPUS implementation of the sastieodology.

The fundamental component of the PDL is the module desoripths noted below, common
elements may be described at a higher level but ultimatedgetact in the flow of interpreting
each module. In outline, a module description consists efgguisite conditions, optional setup
actions, the primary action of the module, and optionalrlgaactions which may be executed
based on the exit status of the primary action.

A pipeline is a collection of modules that defisstings andactions which are executed when
certainevents occur. The modules typically reference each other withimpalme; for instance,
to specify that a previous module must be completed befosthan module may start. The nat-
ural use of logical module names rather than index numbeassignificant improvement of the
language in comparison to the similar OPUS methodologies.

The PDL provides three levels — Application, Pipeline, anddule — for the pipeline architect
to define theactions, events, andsettings. This allows definingactions, events, andsettings which
are common to all of the modules in a pipeline applicationlasfahe modules in a single pipeline
in one place rather than duplicating these definitions itneacdule.

3.7.1 Settings

The PDL defines several control settings which modify thecatten of the pipeline application.
Among these settings are two which ensure that there areisuffdisk space resources to execute
a module’s actions and that the module’s actions do not bedamg or runaway processes. These
are critical in a pipeline application to prevent a processif consuming significant amounts of

11

NOAO Pipeline System PLOO1

system resources as a runaway process or hanging the pipglplication by preventing other
modules and datasets from running and also to ensure theg¢gses which require significant
amounts of disk space are not run on a node with insufficiestiunees. The setting for detecting
processes which execute longer than expected allows théeafcto catch this situation and take
action, such as notifying the operator and letting themrbag the problem.

3.7.2 Actions

Actions perform the work of the pipeline. The PDL defines savactions which perform book-
keeping functions on the blackboard as well as a couple whitdle trigger file management.
Additionally, and more importantly, is what we call tRereign action which is used to launch any
program or script on the host system. This provides the jpipe&lpplication significant flexibility
in the design of the programs which perform the core prongsas they may be written in any
language or data analysis package which is callable froropkeating system.

The NHPPS is designed to perform up to 3 different sets obastwithin a module: Setup,
Primary, and Cleanup.

Setup actions are performed before the Primary action awe $& setup the environment nec-
essary for the Primary action, perform bookkeeping actanthe blackboard, etc.

The Primary action is the action the module is written to exec There is only one Primary
action in each module and it is typicallyFareign action.

The Cleanup actions are sets of actions, one of which mayuexéased upon the Exit Code
event after the Primary action is completed.

3.7.3 Events

As mentioned previously, the NHPPS is event-driven. Th@eswhich trigger the start of execu-
tion for a module are Time, File, and Status events. Therespeaial type of event, the Exit Code
event, which may be used to trigger optional Cleanup aciiotise module.

Time events repeat at fixed intervals between a start andierg] br occur only once at a
specified time.

File events occur when a file matching a search pattern igifedthin a given directory. These
files are called 'trigger files’ within the NHPPS and are a vesgful method for starting the flow
of execution within a pipeline due to their ease of creatimost commonly using ouch from
Unix or IRAF.

Status events occur when the blackboard status for a partimodule matches a certain value.

Exit Code events are generated when a modules primary astioompleted. This value is
typically the value returned from the modules primary attib may be used to instruct the module
to perform a set of cleanup actions, based on the value oftti€CBde. This functionality allows
a module to execute one of a number of different sets of cleautions based upon the Exit
Code. By specifying different sets of cleanup actions, toeute is able to handle cases where the
primary action ended successfully, with a partial resultaded.

12

NOAO Pipeline System PLOO1

3.7.4 Application Level

In many cases, the pipeline architect will find it convenientlefine settings for the minimum
amount of disk space required for a module to execute, orethgth of time to provide a module
to execute in one place, as opposed to defining these vallescinmodule. For this reason, as
well as to easily define Setup and Cleanup action sets thatsaek by all modules in a Pipeline
Application, the NHPPS allows the pipeline architect tomethese in a single XML file which is
merged into each of the pipeline XML files at runtime.

3.7.5 Pipeline Level

For the same reasons the NHPPS provides an Application fev®ipeline Application global
definitions, pipeline specific global definitions may be dedinn the pipeline’s XML file. The
settings within the Pipeline Level take precedence ovesdhio the Application Level.

3.7.6 Module Level

The Module Level is where the actions and settings of a sistgp of the pipeline are defined.
There are typically several modules within a pipeline angesa pipelines within a pipeline ap-
plication. Any setting in the Module Level takes precedeacer the settings in the Pipeline or
Application Levels.

3.8 Performance

A key requirement of the NHPPS infratructure is that they mgg&imal CPU resources. In other
words, the goal of the infrastructure must be to allow thdiappons that it supports to take most
of the CPU resources. The quiescent state of the NHPPS whesiinply waiting for data to
enter a pipeline application, in this case the NOAO Mosaim@a Pipeline, has a Linux kernel
reported load less than 0.01 on the NOAO pipeline clusterual €PU 3.0 GHz Xeons. Note
that this includes a large set of pipelines running as shoviigure 3. The overhead when data is
flowing through the pipeline is hard to quantify but we bediéto still be minimal.

4 NHPPS Optional Components

In this section we briefly describe optional infrastructamnponents which were developed to
work with the NHPPS and pipeline applications. A key desidilgsophy of the NHPPS is to
minimize tight coupling and emphasize simple, weakly cedmptional components. By simple
and weak coupling we primarily mean interprocess commtioicavith our simple messaging
protocol §3.1). This allows easy addition of new or enhanced compand@ht optional we mean
that either configuration or environment information detieres if a component is to be used or
failure to connect to a component is not an error.

13

NOAO Pipeline System

PLOO1

Figure 3: Mosaic pipeline cluster status example.

Pi pel i ne node status report: Fri Sep 29 17:09:09 2006
Current node is pipedm

Node NodeMgr Avai | abl e Pi pelines
pi pedm Runni ng dir, dps, dts, ftr, ngt
pi pen01 Runni ng cal, day, frg, mdp, nmef, pgr

14

NOAO Pipeline System PLOO1

4.1 Data Manager

The Data Manager (DM) is a server that interfaces distribaggplications to data management
services. Communications is through a socket using ourlesimpssaging protocol. In our system
the Data Manager provides access to two primary servicetahdse, called the Pipeline Metadata
Archive System (PMAS), and a Calibration Library.

The primary purpose of the DM is to support pipeline appiaa. It is a key component of
the NOAO pipelines. A secondary purpose is to support manageof processing information.
Pipeline modules may be configured to communicate theiustat the PMAS. In this configu-
ration, the PMAS logs the start and end of module executiongalith information about the
triggers and nodes. This information may be used for digigmseports, and various pipeline
module purposes.

The current DM interfaces to a single database system. Thabakse supports both the calibra-
tion library and the Pipeline Metadata Archive System. Tinerent DM also includes support for
distributed proxy DMs which maintain copies of the data $ypaized with a master DM. This
allows an integrated data management system when pipglpieations run in several locations,
such as at a telescope and at a data processing centers,odesithe scalability of this function
for a large number of pipeline nodes needing frequent acogbe DM.

As with the core components, there are a number of clientrarmg and methods associated
with this component.

4.1.1 Pipeline Metadata Archive System

The Pipeline Metadata Archive System (PMAS) serves theafsdemetadata management system
for the distributed pipeline system and applications. Asces through the data manager server
interface and clients. It is ultimately a general SQL das&bd here are tables specific logging the
status of modules in a pipeline as well as tables specificet@ijreline application.

The data manager server provides convenience methodstforggend putting information as
well as a method to pass through SQL queries and return onerernacords. The pipeline system
provides client applications for getting and putting imf@tion from pipeline modules.

4.1.2 Calibration Library

The purpose of the calibration library is to maintain caiiimn information indexed by a set of
attributes used to select an appropriate calibration foariqular observation. There are two
distinct types of calibration information; parameters dites. The calibration library therefore
requires two elements; a database and a file repository. athbase has multiple roles. It provides
the indexing as well as the calibration parameter inforamati

The indexing attributes in our calibration library are: etgbr, image identifier, filter, a quality
rank, and starting and ending valid dates. The detectorraade identifier attributes are needed
to support multiple instruments and mosaics and the qualiti is used to give greater weight to
calibrations which have been deemed of higher quality.

15

NOAO Pipeline System PLOO1

The date attributes are a fundamental characteristic ofitaragon library. It allows evolution
of the calibrations due to changes in the hardware and pedioce of the instrument. There are
two main types of date dependence which occur in our libi@ne is for self-calibrations needed
to account for day-to-day variation in the characteristitthe detector. Typical examples of this
are bias and dome flat calibrations. The other is for sigmficlhanges in the hardware, such
as replacement of a detector, for changes in the processinger such as processing rules, and
improvements in the instrument characterization. As piti@query to the calibration library the
date of the observation is provided. Only calibrations wiiibe ranges that include the observation
are considered. When multiple choices are available théitguanking and proximity to the
middle of the range are used to select the best calibratioiutlire releases, the data manager will
be enhanced to provide more sophisticated selection rules.

The calibration library supports an arbitrary set of caltion classes. The required classes are
defined by the needs of the pipeline. Examples of classesane flats and crosstalk coefficients.
A typical query is for a particular class given a date and datge, detector, image identifier, and
filter. The result of the query is to return the parameterealuthe path, in network syntax, to the
client. For files there is additional information providemhsisting of the file size and modification
time. The purpose of this extra information is to allow theert to maintain a cache and only
“pull” a copy from the calibration file repository when it doaot have a current copy.

Our system provides client applications for getting andipgtcalibration information through
the data manager server interface. The applications acewisiein pipeline modules. The “get”
application implements a local cache to minimize file transf It may be driven from images
where the selection attributes are determined from the énhagder and the return file and param-
eter information are recorded in the header.

4.1.3 Externally Callable Methods
findid finds the ‘best’ id of the requested object.
getcal, putcal get and put calibration files from or into the calibratiorrdiby.

getkeywordvalue, getkeywordvalueseturn all of the values of a given keyword from the ‘best’
object which matches in the database.

getrepository returns the DMs repository.
findrule searches through a set of rules and returns any which match.
is_mastermode allows a client to determine if this DM is running in ‘mastenode.

newdataproduct, newprocess, finishprocesprovide clients the ability to populate the PMAS
database with relevant information.

setkeywordvalue sets a keyword value for the indicated object in the DM.

sql_query, sgl.update provide clients with the capability to perform remote SQlegas and up-
dates of the DM database.

16

NOAO Pipeline System PLOO1

r il

X| Pipemon

[[Read | Show [, | Hide [ced[2-81, | Delete |, | Quit ||

£4A dir pipednn cccocecocceocceccocood
A-ftrl ftr pipednn ccctccccccccoccod
A-ftri-dayccdl day pipen0l cccoccoccecced
A-ftri-dayccdl-frg frg pipen0l cocccced oo
A-ftrI-dayccdl-rsp rep pipentl cocod oo
A-ftrI-dayccdl-sft sft pipen0l ceoceodo o
A-ftrI-ngt ngt pipedan cccccoccedo o

A-ftrI-ngt-nefctdn20041017T002808 nef pipen)? cccccccccccooodoooo
A-ftri-ngt-nefctdn200d41017T002808-zifcedl sif pipen0? ceccccod
A-ftrI-ngt-nefctdn20041017T003630 nef pipen)6 cccccccccccoodo oo
A-ftri-ngt-nefctdn200d41017T003630-zifcedl sif pipen0b ccccccod
A-ftrI-ngt-nefctdn200410177T004458 nef pipen)d cccccccccccoood o
A-ftrI-ngt-nefctdn20041017T004458-sifcedl =if pipendh coccccod_____
A-ftrIFlat ftr pipednn cccocecc_ccccccocod_
A-ftrIFlat—ngt ngt pipednn cccccoced
A-ftrIFlat-ngt-calctdn20041016T195304F cal pipen? cocccceed
A-ftrIFlat-ngt-calctdn20041016T195304F -scleedl scl pipen? ccccccod_
A-ngt ngt pipedan cccccoced oo
A-ngt-calctdn20041016T18321472 cal pipenl6 cccccocced
A-ngt-calctdn20041016T1832147-scleedl scl pipendé cccccced oo

y e o

Figure 4: Example of the pipeline monitor showing proceg$iom the Mosaic Pipeline. The first
column is the dataset name (the root name is ‘A though intmradhere is a more descriptive
name), the second column is the pipeline, the third coluntindsrode, and the fourth column are
the status flags for each stage. Typically a successfullypteted stage is ‘c’ and a successfully
completed pipeline ends with ‘d’. Only pipelines involvitige first CCD of the mosaic are shown.

4.2 Pipeline Monitor

An essential operational tool for a pipeline applicatioa speline monitor that shows the state of
the processing and indications of errors. A full featureditay that provides convenient access to
all the pipeline processing information, such as the blaektls, node resources, processing logs,
etc., is a major undertaking. Currently we have implemeiteimple monitor for the pipeline
blackboards. Figure 4 shows an example of processing fravvibsaic Pipeline (see Valdes
(2007Db) for more detail).

The blackboards are the most important element definingithedipe processing status. This
was described i§3.4.3. We have found that the most efficient and lowest impagtto monitor
the blackboards is to query all the blackboards for all thagkts and pipelines only to initialize
or reload the monitor and thereafter respond only to updatssages. A query for the all the
distributed blackboard information, especially since ihformation can become quite large after
days and weeks of processing, is fairly slow.

17

NOAO Pipeline System PLOO1

4.3 Message Monitor

The Message Monitor is a graphical tool to receive messages on a socket and yis@en in a
scrollable and sortable window. The messages include @isgegime, the source of the message,
and the message. This is not a particularly novel client irnportant operationally. Currently
the NHPPS core components write messages to disk files anot duake use of a message socket.
However, the message socket is heavily used by the currpelime applications and it will be a
natural evolution to direct NHPPS messages to the sametssckigat they can be monitored with
one or more message user interfaces.

4.4 Switchboard Server

Theswitchboard server is a general tool for connecting any number of input sockessy number

of output sockets. The connections can be defined statiocatlynamically. Clients may contact
the switchboard server arsdbscribe to messages from particular input sockets and either receiv
them back on the same connection or redirect the output tinensocket. The design is such that
it is not an error for clients to join and leave the switchlabar

Another feature of the switchboard server is to archive agss which can then be spooled
back to new clients. This is an optional feature which we radlyrdo not use.

The pipeline monitor is one application that typically usles switchboard server. We have
developed other prototype clients that also benefit fromdbrver.

The switchboard server is an optional component since @dns, such as the pipeline mon-
itor, may be directly connected without the switchboardrasgermediary. However, the purpose
and advantage of the switchboard is to multiplex and log teesage streams. For example, with-
out the switchboard only a single pipeline monitor can belue time. Utilizing the switchboard
allows multiple pipeline monitors or, in the future, addital types of monitors, to display the mes-
sages at the same time. This allows the operator to chechéates ©f the pipeline from multiple
locations, even remote sites. Note that, as optional coemtsnthe switchboard server and clients
connected to the switchboard or directly to the pipelineliappon may come and go without
affecting the processing.

5 Implementation

This paper describes a version identified as NHPPS V1.0 whiglstable, production system. We
continue to refine the implementation and add new featurés€amponents.

The NHPPS core components and clients are primarily writteRython, although we also
utilize shell scripts for some simple clients. One espéciatportant feature of Python is that it
has direct support for generator functions making it palaidy easy to implement the lightweight
micro-threaded MM scheduling algorithm described earlier

We have made use of the following third-party Python packadeaseXML and Pyro. Ea-
seXML is an XML parser which we use during the parsing of out. ML files. Pyro is an RPC
layer which allows local access to remote Python objectss ddpability is used to implement the

18

NOAO Pipeline System PLOO1

‘Blackboard Sharing Layer’ which permits the pipelines ipipeline application to see a single,
unified, blackboard across all pipelines as opposed to lpastocal blackboard for the individual
pipeline.

The Data Manager is also implemented in Python and makesf ilghmon packages for sock-
ets, SQLite for the database engine, and the host file sysiertné calibration file repository.
Some of the key client programs are written in IRAF/SPP a$ agePython. However, the client
programs communicate using the simple NHPPS protd@lLf and can easily be translated to
other languages. The Switchboard Server and the Pipelimgtdare IRAF applications. The
Message Monitor is a Python TK application.

The NHPPS core system, optional components, and the Mosaie(@ Pipeline application
(Valdes, 2007b) have been developed and deployed on arahdistammodity dual-CPU machines
running Linux. The design of the components is such thatrdfiné<-based operating systems can
be used. In fact the cluster can be heterogeneous. In thesfute expect to migrate our system
and pipeline applications to other hardware and operayatems.

The NHPPS has not (yet) been packaged as a software produdb mee have the resources
to provide in-depth support. However, the core system iggdesd and structured with this goal in
mind. We are open to evaluation and collaborative usagamatlr limited resources.

References

Boulade, O., et al., 2003, procspie, 4841, 72

Cline, T., Pierfederici, F., Swaters, R., Thomas, B., & \&@dF., 2007, ASP Conf. Series, in
preparation Pierfederici, F. & Miller, M., 2007, ASP Congkr&s, in preparation

Jacoby, G., et. al., 2002, procspie, 4836, 217
Kaiser, N., et al., 2002, procspie, 4836, 154

McLeod, B., Conroy, M., Gauron, T., Geary, J., & Ordway, M)0B, Proceedings of the Interna-
tional Conf. on Scientific Optical Imaging, Cambridge: Riogaciety of Chemistry

Muller, G., 1998 procspie, 3355, 577

Rose, J., etal., 1995, ASP Conf. Ser., 77, 429

Swaters, R. & Valdes, F., 2007, ASP Conf. Series, in prejmarat

Tyson, J., 2002, procspie, 4836, 10

Valdes, F. & Swaters, R., 2007a, ASP Conf. Series, in préijpara

Valdes, F., Swaters, R., Pierfederici, F., Miller, M., & A8, N., 2007b, pasp, in preparation
Valdes, F., Swaters, R. & Dickinson, M., 2007c, pasp, in arapon

Wester, W., 2005, ASP Conf. Series, 339, 152

19

