
NOAO DPP Document PL001

The NOAO High-Performance Pipeline System

F. Valdes1, T. Cline1, F. Pierfederici2, B. Thomas3, M. Miller 2, R. Swaters3

National Optical Astronomy Observatory
Data Products Program

October 12, 2006

1NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732
2NOAO LSST Program, P.O. Box 26732, Tucson, AZ 85732
3Department of Astronomy, University of Maryland, College Park, MD 20742

Copyright c© 2007 by the authors.

NOAO Pipeline System PL001

Table of Contents

1 Introduction 2

2 Pipeline Applications 3

3 NHPPS Core System 4
3.1 Messaging .5
3.2 Directory Server 5

3.2.1 Externally Callable Methods 6
3.3 Node Manager . 6

3.3.1 Externally Callable Methods 6
3.4 Pipeline Manager .. . 7

3.4.1 Module Manager . 7
3.4.2 Scheduling . 9
3.4.3 Blackboards . 9

3.5 Pipeline Selection Utility 10
3.6 NHPPS host commands .. 10
3.7 Pipeline Description Language 11

3.7.1 Settings . 11
3.7.2 Actions . 12
3.7.3 Events . 12
3.7.4 Application Level .. 13
3.7.5 Pipeline Level . 13
3.7.6 Module Level . 13

3.8 Performance .. 13

4 NHPPS Optional Components 13
4.1 Data Manager .15

4.1.1 Pipeline Metadata Archive System 15
4.1.2 Calibration Library .. . 15
4.1.3 Externally Callable Methods 16

4.2 Pipeline Monitor .. . 17
4.3 Message Monitor .. 18
4.4 Switchboard Server 18

5 Implementation 18

ii

NOAO Pipeline System PL001

Abstract
The NOAO High-Performance Pipeline System (NHPPS) is an event-driven, multiprocess ex-

ecutor system developed to manage pipeline applications ina coarse-grained, distributed process-
ing environment. It allows easy creation of distributed andparallelized data processing pipelines
on a cluster of standard workstations using conventional host-callable programs or Python plu-
gin methods. High performance is achieved by enabling multiple processes to run concurrently
to minimize system idle time and by utilizing a cluster of processing nodes to cooperatively dis-
tribute pipeline steps and portions of datasets for parallel processing. In addition to the core system
we describe optional infrastructure components that work with the core system and with pipeline
applications.

Keywords: mosaic pipeline, operator

1

NOAO Pipeline System PL001

1 Introduction

High performance pipelines are becoming a necessity for handling the large data rates from current
and future astronomical instruments. Examples from optical imaging are the many mega- and giga-
pixel CCD cameras in use (NOAO: Muller, 1998; CFH: Boulade, 2003; MMT: McLeod, 2000) or
under development (ODI: Jacoby, 2002; DEC: Wester, 2005; Pan-STARRS: Kaiser, 2002; LSST:
Tyson, 2002). Not only are images large but the observing cadences can be on the order of an
exposure every few seconds. For this type of observational data handling, pipeline systems tend to
be I/O bound. Therefore, to maximize CPU usage pipeline systems must employ coarse-grained
parallization of both the data and processing.

Coarse-grained data parallelization divides up the data into chunks that can be processed at
the same time. Astronomical imaging datasets are well-suited to data parallelization because they
may be easily split into smaller sub-images, each of which can be distributed for processing to
any one of a number of nodes within a processing cluster. Achieving data parallelization requires
specific design on the part of pipeline architects to ensure that their pipeline applications split
large datasets to take advantage of distributed processingresources while minimizing the impact
of slower network bandwidth. A caveat is that some processing steps are not completely data
parallel because of the need to avoid boundary artifacts andensure global continuity.

Coarse-grained process parallelization, meaning parallelization at the level of individual pro-
grams, keeps CPUs busy while I/O is taking place by performing multiple processing steps in
parallel. An advantage of coarse-grained process parallelization is that modern, general purpose,
operating systems are designed to multi-task efficiently provided there are a reasonable number of
processes active at the same time. This avoids the need for more complex multi-threaded program-
ming and special operating systems. It also allows use of conventional data processing programs,
often from legacy systems.

We have developed a pipeline infrastructure, called the NOAO High-Performance Pipeline Sys-
tem (NHPPS), for creating pipelines which use these parallelization techniques. The system is
based on an event-driven methodology.

An event-driven pipeline works as follows. A pipeline, by definition, “flows” data through a
number of processing steps. Each step has some associated action which is typically, though not
necessarily, a program. Some steps need to be performed in a certain order, some are conditional
on the results of other steps, and some may be performed in parallel with other steps. Rather than
writing down the chain of steps as a sequence with control flowconstructs, such as the “if/else” in
a scripting-style pipeline, an event-driven pipeline onlydescribes the prerequisite events for each
step to be performed. The most common prerequisite is the completion of another step, though
there are many other types of possible prerequisites. The control flow in this methodology is
implicit in the set of prerequisites for each step.

An event-driven approach has many advantages over a sequential one for describing a pipeline.
The principle advantage is that parallel steps follow naturally. In fact, the order in which the steps
are described is not significant, except as a general aid to understanding the expected data flow, so
adding or removing steps is relatively easy. Another key advantage is that events can be generated
externally; that is, the description does not have to include explicit information about how the

2

NOAO Pipeline System PL001

events are generated.
The NHPPS currently includes the following types of events:the exit status of an action (typi-

cally the exit code from a completed program), the state of an(in-memory) blackboard, the creation
of a (trigger) file, the passage of some amount of clock time, and the the occurrence of specific
clock times. Support for additional types of events could easily be added; however, we have found
these to be sufficient to allow creation of complex distributed and parallelized pipelines.

Two useful characteristics of an event-driven system are that the events control the flow of
execution and that the events may be generated in a variety ofways. Pipeline steps can control
their exit status values, create files, and modify the blackboard while operators or non-pipeline
programs can create files or modify the blackboard through client programs. This provides the
pipeline operator the capability to directly impact and control the pipeline application, or choose
to let it run autonomously.

The NHPPS draws on the event methodologies from the OPUS pipeline management system
(Rose, 1995) developed at the Space Telescope Science Institute and used by a number of projects.
We have expanded and improved on these methodologies in manyways. Two key areas are 1)
using a Pipeline Description Language (PDL) in a single file rather than a set of configuration files
and 2) a lighter weight event handling implementation whichuses one process for a pipeline rather
than, typically, one for each step in the pipeline.

In this paper we describe the elements of the NHPPS core system and optional components
which work with the core system to build and operate pipelineapplications. The core components
are a Directory Server, Node Manager, Pipeline Manager, Module Manager, and a Blackboard
system. We also describe clients, server methods, and an XML-based PDL that control or interact
with these components. These elements are sufficient to implement a high performance pipeline
application.

2 Pipeline Applications

As with any complex programming problem, developing a non-trivial pipeline application ben-
efits from the programming concepts of modularity and encapsulation. In our pipeline applica-
tions we decompose the data flow not only into process level steps but also into multiple, higher
level, interacting pipelines. This is why we make the distinction between apipeline application
and apipeline. The NHPPS was designed to support pipeline applications bymanaging multiple
pipelines distributed across multiple nodes.

Higher level pipelines break down a pipeline application into a number of logical units that
interact with each other through standard protocols and have limited functions, for example creat-
ing a calibration or other data product. These pipelines areanalogous to methods or subroutines in
programming languages while the steps in the pipelines are the programming statements. The stan-
dard protocols for connecting these pipelines are then equivalent to the way methods or subroutines
call each other.

This approach has a number of advantages. First is the reduction of complexity in implementing
each high level function. Another is the ability to extend the functionality of a pipeline applica-

3

NOAO Pipeline System PL001

Figure 1: NHPPS Architecture components.

tion by adding new pipelines with the desired capabilities.A less obvious, though significant,
advantage is the flexibility this decomposition provides indeploying work within a cluster of ma-
chines. Depending on the context, such as processing multiple exposures in parallel as opposed
to processing multiple pieces of an exposure in parallel, one can optimize the utilization of the
individual nodes for a particular purpose by controlling which pipelines are run on which nodes.
This is a key concept behind the way the NHPPS supports multiple pipelines. It does not, how-
ever, provide a particular protocol or convention for how the pipelines interact. An example of a
real pipeline application, including example protocols bywhich pipelines interact, is the NOAO
Mosaic Camera Pipeline described by Swaters (2007) and Valdes (2007b).

3 NHPPS Core System

The NOAO High Performance System architecture consists of aDirectory Server (DS) for a
pipeline cluster, a Node Manager (NM) for each pipeline node, a Pipeline Manager (PM) for
each pipeline on each node, a distributed Blackboard systemfor each pipeline, a Module Manager
(MM) for each instance of each module in each pipeline, and control clients that interact with the
system. Figure 1 illustrates this architecture and the communication connections. In this section
we describe these architecture elements.

The NHPPS is able to distribute work across several machines, called nodes, within a processing
cluster. In order to facilitate this, one node within the cluster runs a resource discovery server,
called the Directory Server (DS), and all nodes in the cluster run a node management server, called
the Node Manager (NM). Each NM contacts the DS and tells it that the node is available for
processing. When data is being prepared for processing, a client program,pipeselect, queries
the DS to determine which nodes are available, then determines which of those nodes will be given
the processing task.

4

NOAO Pipeline System PL001

There is nothing in the logic of the NHPPS that requires more than one node. In this case, one
can optionally eliminate the directory server and, in fact,if the pipeline application is run without
starting the DS then it will automatically be confined to a single node. On the other hand, the DS
allows new nodes to be added to a running pipeline with automatic resource discovery. Eliminating
a node during execution works the same way but designing the pipeline application is more difficult
because partial results and data may reside on the node. For cases of gradually shutting down an
active node, operation protocols can be used to allow this tohappen automatically.

The NHPPS may be run on a single machine, however it was designed to run on a multi-node
processing cluster. Each node within the cluster runs a NodeManager and various pipelines within
the Pipeline Application. It is important to note that not all pipelines in a pipeline application have
to run on every node. In addition, there are components that provide services to the cluster. These
are the Directory Server and, if used by the pipeline application, the Data Manager. The nodes and
servers communicate with each other through sockets or through an RPC layer. In this section we
discuss these components of the NHPPS, their socket messaging protocol, the Pipeline Description
Language, and utilities which provide external interfaces.

3.1 Messaging

Our server components primarily communicate through a conventional socket interface. In our
implementation the ports are externally configurable through user environment variables. This
allows different users to develop and run pipelines on the same machines without conflict by simply
assigning different values for the port variables. The portvariables include both the host node and
the port number so that the servers which serve a cluster, such as the DS and DM, can be easily
changed. This is a feature which also allows easily exchanging the roles of cluster nodes when the
cluster composition changes due to failure, removal, or addition of hardware.

One design decision we made for our high-level server components was to use a simple, ASCII-
based messaging protocol layered on standard sockets. The protocol uses new-line delimited “key-
word equal value” elements. The allowed keywords and valuesare defined for each type of mes-
sage and server. There are a few reserved system class keywords that are available to all the servers.
The most important of these is the COMMAND keyword which is used to call methods in the ad-
dressed server. In later sections we list the server methodswhose names are the value string sent
to the particular server with the COMMAND keyword.

This protocol was selected for its ease of implementation using text formatting and parsing
routines found in common programming languages, allowing the protocol to be used across various
languages. An added benefit is that this ASCII-based protocol allows an operator or programmer
to monitor or debug the servers easily by sending and receiving packets using a terminal-based
program such as telnet.

3.2 Directory Server

The Directory Server (DS) is responsible for maintaining a list of the nodes running the NM within
a processing cluster. The NMs occasionally need to determine which nodes are in the processing

5

NOAO Pipeline System PL001

cluster and this list is sent to the NM when requested. Note that the DS is not a communication
intermediary. The NMs communicate with each other directly, the DS simply provides a registry
service.

3.2.1 Externally Callable Methods

get list, get list user, get list host are used to get the complete lists of all nodes in the pipeline
cluster, all nodes with a NM running as a specific user, or all NMs running on a specific node.

add user host, del user host are used to register and de-register NMs with a DS.

3.3 Node Manager

The Node Manager (NM) is primarily responsible for starting, pausing, resuming, and stopping
pipelines. Additional tasks include tracking available resources on a node, and communicating
with the Directory Server (DS) to locate other available NMswithin the pipeline processing cluster.

A NM is started on each node which is a member of the pipeline processing cluster on which
the pipeline application is run. At startup, the NM contactsthe DS to register itself as available
for processing datasets. Note, this requires the DS to be running first. If no DS is running then
the node will be unaware of other processing nodes, however it may still run a pipeline application
restricted to a single machine.

To start a pipeline, the NM is sent a message from a client program, we have providedrunpipe
for this purpose, specifying a list of XML files which describe the pipelines to run and the number
of instances of a pipeline to allow to run at a time. The NM, by convention, searches a directory
specified by an environment variable for the PDL XML files and understands that the files will end
in .xml. Therefore it is convenient to name the PDL files by the pipeline name. Doing so reduces
running the pipeline to executing therunpipe command providing the desired pipeline names as
arguments.

3.3.1 Externally Callable Methods

The NM, being one of the NHPPS servers, responds to messages which adhere to the communica-
tion protocol described in 3.1. When the request includes ‘COMMAND=method’ the NM executes
the correspondingmethod below, returning its result to the caller.

start pipe, stop pipe start and stop Pipeline Managers on the node.

halt pipe, steppipe, resumepipes control the state of execution of pipelines on the node.

get load returns the CPU load on the node.

get dir returns the ‘data’ directory on the node for a given pipeline, and optionally the amount of
free disk space in that directory as well.

6

NOAO Pipeline System PL001

get OpenDatasetCountpipes gets the number of open datasets being processed under the given
pipeline(s).

get queue returns the number of datasets pending for processing on thegiven pipeline(s).

get node list returns a list of nodes in the pipeline cluster from the Directory Server.

test osf returns a list of blackboard entries on the node.

cleanup osf, cleanuppstat are used to scrub clean the osf and pstat blackboards.

3.4 Pipeline Manager

The heart of the NHPPS is the Pipeline Manager (PM). In this architecture, each pipeline in a
pipeline application has a corresponding PM on each node that runs the pipeline. The ability to
control the number and location of pipeline instances is a key feature of our high-performance,
distributed and parallel system. It is intuitive that instances of a pipeline running on multiple
nodes provide distributed processing. What is less obviousis that running multiple instances,
meaning multiple instances of each module in the pipeline, on the same node allows more efficient
utilization of nodes with multiple CPUs for essentially thesame reasons as with multiple machines.

Control of the number and location of pipeline instances provides the flexibility to customize a
pipeline application to the problem and computing resources. In some cases a pipeline performing
a high-level function, such as organizing many night’s worth of data into datasets based on filter
and night, needs only one instance on one node. In other casesa pipeline performing a data
parallel function, such as processing a single piece of a larger format exposure, would have as
many instances as there are pieces of the exposure or available nodes.

The PM is primarily responsible for parsing its pipeline’s PDL file, setting up Module Managers
for each Module in the pipeline, providing scheduling guidance to the Module Managers (MM),
and creating shared Blackboards. The Module Manger is described in a following section but in
outline it is responsible for a single pipeline stage. Architecturally we are describing a MM as a
separate logical component. However, the PM operates as a single process, internally managing
‘micro-threads’ corresponding to instances of the Module Managers. These ‘micro-threads’ do
not have significant context switch overhead. They therefore do not consume operating system
resources, increasing the overall efficiency of the system.

A mentioned in the introduction, this micro-thread implementation for the MM is a key im-
provement over OPUS (Rose, 1995). In OPUS the equivalent of the MM is implemented as a
separate polling process resulting in a potentially large number of processes. This is undesirable
because the process table can become unmanageably large andthe overhead in context switches
can become significant.

3.4.1 Module Manager

Each instance of a Module within a pipeline has an associatedModule Manager (MM) which
performs two key tasks 1) checking that the events necessaryfor the Module to execute have

7

NOAO Pipeline System PL001

occurred and 2) setting the environment and executing the Module’s actions when the required
events have occurred. The MMs operate concurrently. Therefore, all modules whose events are
satisfied will initiate their associated actions and wait for their completion without blocking other
MMs. This provides the desired coarse-grained parallel processing of different steps within a
pipeline.

In data parallel processing it is common for the steps to become synchronized such that dif-
ferent datasets will be in the same processing stage at the same time on the same machine. We
therefore allow multiple MMs, called instances, for each module in a pipeline. By providing mul-
tiple instances, we typically use one instance per CPU so that for a dual-CPU machine there are
two instances, we find that the CPUs are best utilized with minimal idle time.

For the pipeline architect the main function of the MM is to execute a desired action which is
typically a program. The program may be specific to a single module but often is more generic. In
either case the program needs context information when it isrun. The module manager provides
this in two ways. Programs may be called with arguments, specified in the pipeline description
language (PDL), and the MM supplies the command-line arguments when executing the program,
translating any logical variables first. The MM also sets a number of standard environment vari-
ables which the program can then access. These include the dataset name or identifier, the pipeline
name, the module name, the type of event, the module’s blackboard flag when it is triggered, the
start time, the process identification, and logical directories associated with the pipeline.

The basic functionality of the MM is implemented as a generator function; a programming
technique where a function can return control to the caller and then be continued from where it
left off. This means that, coupled with an appropriate scheduling service, Module Managers act
as lightweight, micro-threads. The benefits of using generator functions are that they maintain
their state between calls, return, oryield, at various points during execution and resume where
processing left off the next time they are called. Additionally, they are run within the process space
of the caller, in this case the PM, so they do not incur any operating system threading overhead.

The MM is particularly suited to a generator function as its two primary responsibilities may be
broken into 4 distinct tasks which must be executed in sequence: 1) check the prerequisite events,
2) perform optional setup actions, 3) execute the primary action, and 4) perform optional cleanup
actions, which leads to the the logical structure shown in figure 2.

Each time therun function is called, it executes until it reaches ayield statement. At that
point, it returns to the caller. On subsequent calls, therun function starts execution immediately
following theyield statement it ended with during the previous call.

Therun function returns a value,X, to the caller when it encounters theyield statement. This
value is a fraction of a second the MM wishes to be inactive before again being ‘run’. Typically,
if the module’s events have occurred, the value ofX will be 0, meaning that the MM wishes to be
run again as soon as possible to process a dataset. However, if the module’s prerequisite events
have not occurred, then the MM will more likely request some time to ‘sleep’ before checking the
status of its prerequisite events again.

8

NOAO Pipeline System PL001

Figure 2: Pseudo-code for a MM generator function.

def run():
while True:

if eventsOccurred():
runSetup()
yield X
runPrimary()
yield X
runCleanup()

yield X

3.4.2 Scheduling

As previously mentioned, one of the tasks of the PM is to provide scheduling services to the MMs.
In other words, the PM is responsible for calling therun function within each MM to ensure that
the MMs which are not processing a dataset are checking the status of their prerequisite events, and
the ones which are processing a dataset are performing theirsetup, primary, and cleanup actions.

The scheduling component within the PM keeps track of the times therun function in each MM
was last called. The scheduling mechanism continuously loops over each MM in the PM, compar-
ing the difference between the time it was last ‘run’ and the current time with the requested sleep
time. If the difference is greater than the sleep time, the MMsrun function is called, otherwise it
is skipped.

After checking all of the MMs and running them as appropriate, the scheduling mechanism
goes to sleep for a small period of time between loop iterations. The amount of time is configurable
through the pipeline description language.

3.4.3 Blackboards

Blackboards store messages posted by the MMs. These messages may be requests for other MMs
to begin processing data, status of current dataset processing, or even the status of the MM itself.
Blackboards are visible toall of the MMs in the pipeline, and therefore MMs are able to, and do,
‘communicate’ with each other by posting and reading messages on the blackboards.

The PM creates two distinct blackboards in memory, which mayoptionally be mirrored on disk.
These two blackboards track 1) the progress of individual datasets through the pipeline and 2) the
status of pipeline modules to include, among other things, whether they are active or inactive,
which dataset they are processing, and when they began processing.

As we have mentioned, these blackboards are shared among allof the MMs in the PM. This
allows each module to check the status of the other modules inthe pipeline.

Another function of the blackboard is to broadcast changes through a socket, the host and port
of which are defined in the environment. It is not an error if the sockets host and port are not

9

NOAO Pipeline System PL001

defined or if there is no client listening to the socket. Therefore, optional clients may be written to
respond to blackboard events. There is currently one simplepipeline monitor client which can be
connected directly to these messages or through a multiplexing server. These optional components
are described in§4.2 and§4.4.

3.5 Pipeline Selection Utility

The pipeline selection utility,pipeselect, is a key tool in building distributed pipeline applica-
tions. The purpose of this utility is to discover available pipelines, rank their resources, and provide
trigger information.

A module in one pipeline in one pipeline that wishes to trigger another pipeline must first
discover the instances of the pipeline. It specifies the nameof the desired pipeline, whether a
list of the available pipelines is to be returned or a ranked list for a desired number of instances,
and the required disk space available to the pipeline. In addition to the arguments, the utility
uses a configuration file that currently defines whether a desired pipeline may be anywhere in the
processing cluster, must be on the same node as the calling pipeline, or must be on any node other
than the local node.

pipeselect contacts the local NM and requests a list of all the node managers it knows
about. Normally the NM checks with the DS. Then using the information from the configuration
file it contacts the potential NMs to find if they are running the desired pipeline. If a minimum
disk space requirement is specified the list is limited to those nodes meeting the requirement. The
trigger information for the pipeline consists of a directory path (in a network syntax) where a file
trigger event may be created.

If a ranked list of a certain number of pipeline instances is requestedpipeselect additionally
filters the results based on the “load” of each pipeline. The measure of “load” is currently the
number of “open” datasets in the pipeline. The list is then ordered from lowest to highest “load”
and nodes with the same “load” are randomly shuffled. The returned list will then be as many
trigger directories as the number of instances requested.

3.6 NHPPS host commands

The NHPPS provides an assortment of commands to begin, control, and end the execution of
pipeline applications. The most important are outlined below.

plrun high level command to start a particular pipeline configuration.

plstatus reports the status of nodes, node managers, and pipelines.

pltest high level command to run a pipeline regression test.

plssh execute a pipeline command on all pipeline nodes.

servers starts the servers (NM, DS, etc. . .).

runpipe starts PMs for the specified pipelines.

10

NOAO Pipeline System PL001

osf halt causes the pipeline to stop responding to triggering events.

osf resume resumes normal pipeline activity after calls to eitherosf halt or osf step.

osf step executes a single module of the pipeline.

osf test lists the contents of the blackboard.

osf update sets the status flag for a blackboard entry.

stopall kills all pipeline related processes on the local node.

stoppipe stops PMs of given pipelines.

stopserver kills servers (NM, DS, etc. . .).

pipeselectperforms load-balancing while determining which nodes should process datasets. pro-
cesses.

3.7 Pipeline Description Language

The Pipeline Description Language (PDL) is used to define thepipelines which create a pipeline
application. It is implemented as an XML grammar. The language is specialized for describing the
coarse-grained, event-driven logic discussed earlier. This language is one significant improvement
we have made over the earlier OPUS implementation of the samemethodology.

The fundamental component of the PDL is the module description. As noted below, common
elements may be described at a higher level but ultimately these act in the flow of interpreting
each module. In outline, a module description consists of prerequisite conditions, optional setup
actions, the primary action of the module, and optional cleanup actions which may be executed
based on the exit status of the primary action.

A pipeline is a collection of modules that definesettings andactions which are executed when
certainevents occur. The modules typically reference each other within a pipeline; for instance,
to specify that a previous module must be completed before another module may start. The nat-
ural use of logical module names rather than index numbers isa significant improvement of the
language in comparison to the similar OPUS methodologies.

The PDL provides three levels – Application, Pipeline, and Module – for the pipeline architect
to define theactions, events, andsettings. This allows definingactions, events, andsettings which
are common to all of the modules in a pipeline application or all of the modules in a single pipeline
in one place rather than duplicating these definitions in each module.

3.7.1 Settings

The PDL defines several control settings which modify the execution of the pipeline application.
Among these settings are two which ensure that there are sufficient disk space resources to execute
a module’s actions and that the module’s actions do not become hung or runaway processes. These
are critical in a pipeline application to prevent a process from consuming significant amounts of

11

NOAO Pipeline System PL001

system resources as a runaway process or hanging the pipeline application by preventing other
modules and datasets from running and also to ensure that processes which require significant
amounts of disk space are not run on a node with insufficient resources. The setting for detecting
processes which execute longer than expected allows the architect to catch this situation and take
action, such as notifying the operator and letting them diagnose the problem.

3.7.2 Actions

Actions perform the work of the pipeline. The PDL defines several actions which perform book-
keeping functions on the blackboard as well as a couple whichhandle trigger file management.
Additionally, and more importantly, is what we call theForeign action which is used to launch any
program or script on the host system. This provides the pipeline application significant flexibility
in the design of the programs which perform the core processing as they may be written in any
language or data analysis package which is callable from theoperating system.

The NHPPS is designed to perform up to 3 different sets of actions within a module: Setup,
Primary, and Cleanup.

Setup actions are performed before the Primary action and serve to setup the environment nec-
essary for the Primary action, perform bookkeeping actionson the blackboard, etc.

The Primary action is the action the module is written to execute. There is only one Primary
action in each module and it is typically aForeign action.

The Cleanup actions are sets of actions, one of which may execute based upon the Exit Code
event after the Primary action is completed.

3.7.3 Events

As mentioned previously, the NHPPS is event-driven. The events which trigger the start of execu-
tion for a module are Time, File, and Status events. There is aspecial type of event, the Exit Code
event, which may be used to trigger optional Cleanup actionsin the module.

Time events repeat at fixed intervals between a start and end time, or occur only once at a
specified time.

File events occur when a file matching a search pattern is found within a given directory. These
files are called ’trigger files’ within the NHPPS and are a veryuseful method for starting the flow
of execution within a pipeline due to their ease of creation,most commonly usingtouch from
Unix or IRAF.

Status events occur when the blackboard status for a particular module matches a certain value.
Exit Code events are generated when a modules primary actionis completed. This value is

typically the value returned from the modules primary action. It may be used to instruct the module
to perform a set of cleanup actions, based on the value of the Exit Code. This functionality allows
a module to execute one of a number of different sets of cleanup actions based upon the Exit
Code. By specifying different sets of cleanup actions, the module is able to handle cases where the
primary action ended successfully, with a partial result, or failed.

12

NOAO Pipeline System PL001

3.7.4 Application Level

In many cases, the pipeline architect will find it convenientto define settings for the minimum
amount of disk space required for a module to execute, or the length of time to provide a module
to execute in one place, as opposed to defining these values ineach module. For this reason, as
well as to easily define Setup and Cleanup action sets that areused by all modules in a Pipeline
Application, the NHPPS allows the pipeline architect to define these in a single XML file which is
merged into each of the pipeline XML files at runtime.

3.7.5 Pipeline Level

For the same reasons the NHPPS provides an Application Levelfor Pipeline Application global
definitions, pipeline specific global definitions may be defined in the pipeline’s XML file. The
settings within the Pipeline Level take precedence over those in the Application Level.

3.7.6 Module Level

The Module Level is where the actions and settings of a singlestep of the pipeline are defined.
There are typically several modules within a pipeline and several pipelines within a pipeline ap-
plication. Any setting in the Module Level takes precedenceover the settings in the Pipeline or
Application Levels.

3.8 Performance

A key requirement of the NHPPS infratructure is that they useminimal CPU resources. In other
words, the goal of the infrastructure must be to allow the applications that it supports to take most
of the CPU resources. The quiescent state of the NHPPS when itis simply waiting for data to
enter a pipeline application, in this case the NOAO Mosaic Camera Pipeline, has a Linux kernel
reported load less than 0.01 on the NOAO pipeline cluster of dual CPU 3.0 GHz Xeons. Note
that this includes a large set of pipelines running as shown in figure 3. The overhead when data is
flowing through the pipeline is hard to quantify but we believe it to still be minimal.

4 NHPPS Optional Components

In this section we briefly describe optional infrastructurecomponents which were developed to
work with the NHPPS and pipeline applications. A key design philosophy of the NHPPS is to
minimize tight coupling and emphasize simple, weakly coupled optional components. By simple
and weak coupling we primarily mean interprocess communication with our simple messaging
protocol (§3.1). This allows easy addition of new or enhanced components. By optional we mean
that either configuration or environment information determines if a component is to be used or
failure to connect to a component is not an error.

13

NOAO Pipeline System PL001

Figure 3: Mosaic pipeline cluster status example.

Pipeline node status report: Fri Sep 29 17:09:09 2006
Current node is pipedmn

Node NodeMgr Available Pipelines

pipedmn Running dir, dps, dts, ftr, ngt

pipen01 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen02 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen03 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen04 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen05 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen06 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen07 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

pipen08 Running cal, day, frg, mdp, mef, pgr,

rsp, scl, sft, sif, xtc, xtm

14

NOAO Pipeline System PL001

4.1 Data Manager

The Data Manager (DM) is a server that interfaces distributed applications to data management
services. Communications is through a socket using our simple messaging protocol. In our system
the Data Manager provides access to two primary services; a database, called the Pipeline Metadata
Archive System (PMAS), and a Calibration Library.

The primary purpose of the DM is to support pipeline applications. It is a key component of
the NOAO pipelines. A secondary purpose is to support management of processing information.
Pipeline modules may be configured to communicate their status to the PMAS. In this configu-
ration, the PMAS logs the start and end of module execution along with information about the
triggers and nodes. This information may be used for diagnostics, reports, and various pipeline
module purposes.

The current DM interfaces to a single database system. The database supports both the calibra-
tion library and the Pipeline Metadata Archive System. The cuurent DM also includes support for
distributed proxy DMs which maintain copies of the data synchronized with a master DM. This
allows an integrated data management system when pipeline applications run in several locations,
such as at a telescope and at a data processing centers, and improves the scalability of this function
for a large number of pipeline nodes needing frequent accessto the DM.

As with the core components, there are a number of client programs and methods associated
with this component.

4.1.1 Pipeline Metadata Archive System

The Pipeline Metadata Archive System (PMAS) serves the roleof a metadata management system
for the distributed pipeline system and applications. Access is through the data manager server
interface and clients. It is ultimately a general SQL database. There are tables specific logging the
status of modules in a pipeline as well as tables specific to the pipeline application.

The data manager server provides convenience methods for getting and putting information as
well as a method to pass through SQL queries and return one or more records. The pipeline system
provides client applications for getting and putting information from pipeline modules.

4.1.2 Calibration Library

The purpose of the calibration library is to maintain calibration information indexed by a set of
attributes used to select an appropriate calibration for a particular observation. There are two
distinct types of calibration information; parameters andfiles. The calibration library therefore
requires two elements; a database and a file repository. The database has multiple roles. It provides
the indexing as well as the calibration parameter information.

The indexing attributes in our calibration library are: detector, image identifier, filter, a quality
rank, and starting and ending valid dates. The detector and image identifier attributes are needed
to support multiple instruments and mosaics and the qualityrank is used to give greater weight to
calibrations which have been deemed of higher quality.

15

NOAO Pipeline System PL001

The date attributes are a fundamental characteristic of a calibration library. It allows evolution
of the calibrations due to changes in the hardware and performance of the instrument. There are
two main types of date dependence which occur in our library.One is for self-calibrations needed
to account for day-to-day variation in the characteristicsof the detector. Typical examples of this
are bias and dome flat calibrations. The other is for significant changes in the hardware, such
as replacement of a detector, for changes in the processing recipe, such as processing rules, and
improvements in the instrument characterization. As part of the query to the calibration library the
date of the observation is provided. Only calibrations withdate ranges that include the observation
are considered. When multiple choices are available the quality ranking and proximity to the
middle of the range are used to select the best calibration. In future releases, the data manager will
be enhanced to provide more sophisticated selection rules.

The calibration library supports an arbitrary set of calibration classes. The required classes are
defined by the needs of the pipeline. Examples of classes are dome flats and crosstalk coefficients.
A typical query is for a particular class given a date and daterange, detector, image identifier, and
filter. The result of the query is to return the parameter value or the path, in network syntax, to the
client. For files there is additional information provided consisting of the file size and modification
time. The purpose of this extra information is to allow the client to maintain a cache and only
“pull” a copy from the calibration file repository when it does not have a current copy.

Our system provides client applications for getting and putting calibration information through
the data manager server interface. The applications are used within pipeline modules. The “get”
application implements a local cache to minimize file transfers. It may be driven from images
where the selection attributes are determined from the image header and the return file and param-
eter information are recorded in the header.

4.1.3 Externally Callable Methods

findid finds the ‘best’ id of the requested object.

getcal, putcal get and put calibration files from or into the calibration library.

getkeywordvalue, getkeywordvaluesreturn all of the values of a given keyword from the ‘best’
object which matches in the database.

get repository returns the DMs repository.

findrule searches through a set of rules and returns any which match.

is mastermodeallows a client to determine if this DM is running in ‘master’mode.

newdataproduct, newprocess, finishprocessprovide clients the ability to populate the PMAS
database with relevant information.

setkeywordvaluesets a keyword value for the indicated object in the DM.

sql query, sql update provide clients with the capability to perform remote SQL queries and up-
dates of the DM database.

16

NOAO Pipeline System PL001

Figure 4: Example of the pipeline monitor showing processing from the Mosaic Pipeline. The first
column is the dataset name (the root name is ‘A’ though in practice there is a more descriptive
name), the second column is the pipeline, the third column isthe node, and the fourth column are
the status flags for each stage. Typically a successfully completed stage is ‘c’ and a successfully
completed pipeline ends with ‘d’. Only pipelines involvingthe first CCD of the mosaic are shown.

4.2 Pipeline Monitor

An essential operational tool for a pipeline application isapipeline monitor that shows the state of
the processing and indications of errors. A full featured monitor that provides convenient access to
all the pipeline processing information, such as the blackboards, node resources, processing logs,
etc., is a major undertaking. Currently we have implementeda simple monitor for the pipeline
blackboards. Figure 4 shows an example of processing from the Mosaic Pipeline (see Valdes
(2007b) for more detail).

The blackboards are the most important element defining the pipeline processing status. This
was described in§3.4.3. We have found that the most efficient and lowest impactway to monitor
the blackboards is to query all the blackboards for all the datasets and pipelines only to initialize
or reload the monitor and thereafter respond only to update messages. A query for the all the
distributed blackboard information, especially since this information can become quite large after
days and weeks of processing, is fairly slow.

17

NOAO Pipeline System PL001

4.3 Message Monitor

The Message Monitor is a graphical tool to receive messages on a socket and display them in a
scrollable and sortable window. The messages include a severity, a time, the source of the message,
and the message. This is not a particularly novel client but is important operationally. Currently
the NHPPS core components write messages to disk files and do not make use of a message socket.
However, the message socket is heavily used by the current pipeline applications and it will be a
natural evolution to direct NHPPS messages to the same socket so that they can be monitored with
one or more message user interfaces.

4.4 Switchboard Server

Theswitchboard server is a general tool for connecting any number of input sockets to any number
of output sockets. The connections can be defined staticallyor dynamically. Clients may contact
the switchboard server andsubscribe to messages from particular input sockets and either receive
them back on the same connection or redirect the output to another socket. The design is such that
it is not an error for clients to join and leave the switchboard.

Another feature of the switchboard server is to archive messages which can then be spooled
back to new clients. This is an optional feature which we normally do not use.

The pipeline monitor is one application that typically usesthe switchboard server. We have
developed other prototype clients that also benefit from this server.

The switchboard server is an optional component since applications, such as the pipeline mon-
itor, may be directly connected without the switchboard as an intermediary. However, the purpose
and advantage of the switchboard is to multiplex and log the message streams. For example, with-
out the switchboard only a single pipeline monitor can be used at a time. Utilizing the switchboard
allows multiple pipeline monitors or, in the future, additional types of monitors, to display the mes-
sages at the same time. This allows the operator to check the status of the pipeline from multiple
locations, even remote sites. Note that, as optional components, the switchboard server and clients
connected to the switchboard or directly to the pipeline application may come and go without
affecting the processing.

5 Implementation

This paper describes a version identified as NHPPS V1.0 whichis a stable, production system. We
continue to refine the implementation and add new features and components.

The NHPPS core components and clients are primarily writtenin Python, although we also
utilize shell scripts for some simple clients. One especially important feature of Python is that it
has direct support for generator functions making it particularly easy to implement the lightweight
micro-threaded MM scheduling algorithm described earlier.

We have made use of the following third-party Python packages: EaseXML and Pyro. Ea-
seXML is an XML parser which we use during the parsing of our PDL XML files. Pyro is an RPC
layer which allows local access to remote Python objects. This capability is used to implement the

18

NOAO Pipeline System PL001

‘Blackboard Sharing Layer’ which permits the pipelines in apipeline application to see a single,
unified, blackboard across all pipelines as opposed to just the local blackboard for the individual
pipeline.

The Data Manager is also implemented in Python and makes use of Python packages for sock-
ets, SQLite for the database engine, and the host file system for the calibration file repository.
Some of the key client programs are written in IRAF/SPP as well as Python. However, the client
programs communicate using the simple NHPPS protocol (§3.1) and can easily be translated to
other languages. The Switchboard Server and the Pipeline Monitor are IRAF applications. The
Message Monitor is a Python TK application.

The NHPPS core system, optional components, and the Mosaic Camera Pipeline application
(Valdes, 2007b) have been developed and deployed on a cluster of commodity dual-CPU machines
running Linux. The design of the components is such that other Unix-based operating systems can
be used. In fact the cluster can be heterogeneous. In the future we expect to migrate our system
and pipeline applications to other hardware and operating systems.

The NHPPS has not (yet) been packaged as a software product nor do we have the resources
to provide in-depth support. However, the core system is designed and structured with this goal in
mind. We are open to evaluation and collaborative usage within our limited resources.

References

Boulade, O., et al., 2003, procspie, 4841, 72

Cline, T., Pierfederici, F., Swaters, R., Thomas, B., & Valdes, F., 2007, ASP Conf. Series, in
preparation Pierfederici, F. & Miller, M., 2007, ASP Conf. Series, in preparation

Jacoby, G., et. al., 2002, procspie, 4836, 217

Kaiser, N., et al., 2002, procspie, 4836, 154

McLeod, B., Conroy, M., Gauron, T., Geary, J., & Ordway, M., 2000, Proceedings of the Interna-
tional Conf. on Scientific Optical Imaging, Cambridge: Royal Society of Chemistry

Muller, G., 1998 procspie, 3355, 577

Rose, J., et al., 1995, ASP Conf. Ser., 77, 429

Swaters, R. & Valdes, F., 2007, ASP Conf. Series, in preparation

Tyson, J., 2002, procspie, 4836, 10

Valdes, F. & Swaters, R., 2007a, ASP Conf. Series, in preparation

Valdes, F., Swaters, R., Pierfederici, F., Miller, M., & Zarate, N., 2007b, pasp, in preparation

Valdes, F., Swaters, R. & Dickinson, M., 2007c, pasp, in preparation

Wester, W., 2005, ASP Conf. Series, 339, 152

19

