
NOAO SDM Document PL002

The NHPPS Pipeline Definition Language (PDL)

F. Valdes1, F. Pierfederici1,2, D. Scott1

National Optical Astronomy Observatories
Science Data Management

V2.0: February 9, 2012

1NOAO Science Data Management, P.O. Box 26732, Tucson, AZ 85732
2Currently: Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218

Copyright c© 2012 by the authors.

NHPPS PDL PL002

Table of Contents

1 Introduction 1

2 The Element Hierarchy 2

3 System PDL File 2

4 Pipeline PDL Files 2

5 Macros 2

6 Variable Substitution 3

7 Exit Codes 3

8 Templates 4

References 4

Appendix A: PDL Technical Specification 5
PDL Elements .5
PDL Attributes .. 9

Appendix B: Example 14

List of Figures

1 Example pipeline PDL file. .. 14
2 Example system PDL file. .15
3 Compiled PDL from the source files in figures 1 and 2. 16

ii

NHPPS PDL PL002

1 Introduction

The NOAO High Performance Pipeline System(NHPPS) [1] orchestratespipelines. A pipeline
consists of a set of steps or stages calledmodules. The modules aretriggeredby eventswhich the
it is looking for such as the appearance of a file in a directoryor a change in ablackboard. When
a module is triggered it performs a set ofactions; a set preprocessing actions, a processing action,
and a set of final actions. Different sets of final actions are selected depending on theexit statusof
the processing action. For more complete details on NHPPS see reference [1].

The definition of the pipelines, modules, and the various actions of a module are specified by the
NHPPSPipeline Definition Language(PDL). The general features and the technical specification
of the PDL is the subject of this document. This document describes the V2.0 PDL which is an
extension of the previous version.

The NHPPS PDL provides a 3 level inheritance hierarchy for commands an options, essentially
XML elements and attributes. These levels areSystem, Pipeline, andModule. This tri-layered
approach allows elements to be defined globally for all pipelines forming aPipeline Application,
globally for all modules in a pipeline, or individually for amodule. In this hierarchy the elements
defined at a more global level are inherited only if the same element is not defined at the lower
level.

The PDL is expressed in theeXtensible Markup Language(XML). The files defining an NHPPS
pipeline application consist of a single system XML file and separate pipeline XML files. The
system file has only global elements while the pipeline files have global elements and module
elements.

Compiling the PDL files means merging the system level global elements into the pipeline
global elements and then merging the pipeline global elements into the module elements of the
pipeline. This compiling takes place when aPipeline Manageris invoked to orchestrate a pipeline.
The merged PDL is written to the pipeline manager’s standardoutput for reference. Normally
the PDL source is left in the layered form but the NHPPS command pdlcompile may be used
to generate the fully merged pipeline PDL version. This compiled version is mostly intended
for checking the correctness of the inheritance definitions, though it is legal to use the compiled
version in place of the layered version.

Two important new features in V2.0 not found in the earlier version are atemplatingmechanism
for modules and a mapping of exit status codes and tological identifiers. Because it is typical
that modules have very similar definitions, both within a pipeline and across all pipelines in an
application, the templating allows much simpler pipeline PDL descriptions and also enforcing
standards across the pipelines in an application. The use oflogical names for processing command
exit codes, with associated attributes, such as severity levels, also improves PDL readability and
standardization within an application.

The general and technical descriptions in this document canbe initially difficult to grasp. Ref-
erence to the example in the appendix can be a good aid to understanding the description.

1

NHPPS PDL PL002

2 The Element Hierarchy

The PDL elements which may appear only in the System and Pipeline global levels are:ExitCodes
andTemplate. The elements which may appear in all three levels are:Directories, MaxExec,
MinDisk , Trigger , PreProcAction, ProcAction, PostProcAction. The the attributemaxActive
may also appear in the three levels. TheModule element only appears in the pipeline PDL.

TheTemplate element is used, at the system and pipeline levels, to group inherited values for
inclusion only in modules that identify themselves as of that template type.

3 System PDL File

The System PDL file is used to define inheritable elements for the ALL of the pipelines, and
subsequently the pipelines modules, which are members of the System. The root element of a
System PDL file is theSystemelement.

4 Pipeline PDL Files

The Pipeline PDL file defines default elements for the moduleswithin the pipeline. Additionally,
and more importantly, the Pipeline PDL file defines theModuleswhich comprise the pipeline. The
root element of a Pipeline PDL file is thePipelineelement.

5 Macros

To provide a level of flexibility in the PDL files, 3 Macros havebeen defined. Macros are executed
when the XML file is read.

ENV: This macro replaces its argument with the value of the environment variable with the same
name as the argument. For example if$PIPENAME has the value ’dir’ then,<Pipeline
name="ENV(PIPENAME)">would be interpreted as<Pipeline name="dir">.

Do not use the ENV macro on environment variables you want to have interpreted during
runtime (variables that may change), as the ENV macro, like all the others, is interpreted
when the PDL file is read.

CAPS: This macro replaces its argument with a completely capitalized version. For example,
x="CAPS(dir)DATA" is interpreted asx="DIRDATA".

INDEX: This macro replaces its argument (the name of aModule in thePipeline) with the index
of theModule.

2

NHPPS PDL PL002

6 Variable Substitution

The PDL parser has the ability to replace variables which have the syntax${...}. In particular,
attributes of elements may be specified as${element.attribute}. The special element,self
refers to theModule in which the variable exists, otherwise the tree from the root PDL element to
the attribute must be specified.

The most widely used variable is${self.name} which may be shortened to${name}. The
variable${pipe} is similarly a short form for name attribute of the Pipeline element (i.e.${Pipeline.name}).

An attribute which is important in allowing module templates to be described and then substi-
tuted in specific modules isvars. This attribute of theModule element has a value consisting of
a string of words; e.g.vars="a b c". The full string may be substituted in elements within a
module by$vars for the whole string and${vars[1]}, ${vars[2]}, etc. for the words. Note this
is one-indexed.

7 Exit Codes

NHPPS executes commands specified in the action elements. These commands, which may be
build-in, plug-in, or host, return an exit status. The PDL, and NHPPS, is designed around respond-
ing to these exit status in various ways. Due to the nature of host commands which only return an
integer exit code (in the range 0-255) it is desirable to map these codes to logical identifiers with
associated attributes. This is done using theExitCodeselement.

This element associates acodewith a logicalid, a categorytype, and adescription. In addition,
a blackboardflag (a single character) may be associated with the code. The code and id must be
unique. When an association is defined the logical id may be used in the PDL instead of a code.

The set of associations forms a look-up table or map. This information is compiled and stored
at the same time as the PDL is compiled by the Pipeline Manager. This stored map can then be
used with theosf exitinfo command in the host commands to map an id in the program to an
exit code which is then mapped back to the id in NHPPS for action in the PDL logic. This is allows
developers to think purely in terms of logical ids.

The category types are useful in association with tools thatquery the blackboard (where the exit
ids are also stored) and the compiled mapping to react to classes of module results. These classes
are basically severity levels from complete success, to recoverable errors, to fatal errors.

The flag values are only needed forosf exitinfo to interpret blackboard flags that are set
independently of an action status code returned by an actionand subsequently entered into the
blackboard. For instance, if the blackboard is updated by anosf update command in the PDL or
from the command line.

Because the information is part of the PDL, and compiled whena pipeline is started, it ensures
the consistency of the mappings if the PDL is changed. The exit code elements, which occur only
in the system and pipeline global definitions, allow definingpipeline application standards in the
System PDL as well as more specialized exit ids in specific pipelines.

Note that if there are noExitCodeselements the PDL can still be used but the identifier strings

3

NHPPS PDL PL002

will simply be the integer codes; i.e. if there is no mapping for an exit code to an id, the exit code
becomes the id.

8 Templates

The V2.0 PDL provides a templating system for modules. A template is very much like a module
in that can contain all the same elements. However, it is usesvariable substitution to apply to
various modules. The templates can be either at the system level or the pipeline level. Since
most pipelines in a pipeline application typically have similar types of modules, for instance for
initializing or finishing up or just a simple blackboard trigger running a host command of the same
name as the module, it makes sense to abstract these as systemlevel templates.

The templates and modules have atype attribute which is used to associate a template with a
module. The value of the types is completely up to the developer. When a matching type between a
module and a template is found the elements of the template are merged into the module definition.
If a module does not specify a type the default is a type of ”Module”. The rules are:

1. MaxExec, MinDisk , PreProcAction, andProcAction, where there can only be one element
per module, the template element is only added if it is not present in the module definition.

2. Trigger , which may have multiple instances in a module, will only be added if there are no
trigger elements in the module; i.e. there is no merging.

3. PostProcAction, which generally have multiple instances in a module, are matched by the
val attribute of theExitCode element they contain. Only template PostProcAction elements
with exit codes which don’t match an exit code in the module are added.

4. MaxExecandMinDisk , which can be defined in four places, have the following precedence:
module, pipeline global, template, system global.

As noted in the introduction, the templating mechanism allows much more concise and con-
sistent pipeline descriptions. This addresses comments sometimes made about the verboseness of
XML syntax used to express the PDL. Of course, while the many pipeline PDL files in an appli-
cation can be made more compact and readable, the complexityis moved into construction of the
templates.

References

[1] F. Valdes, T. Cline, F. Pierfederici, B. Thomas, M. Miller, and R. Swaters. The NOAO High-
Performance Pipeline System. SDM Pipeline Document PL001,NOAO/SDM, Oct 2006.
http://chive.tuc.noao.edu/noaodpp/Pipeline/PL001.pdf.

4

NHPPS PDL PL002

Appendix A: PDL Technical Specification

The technical specification of the XML used by the Pipeline Definition Language is defined by
the EaseXMLpackage used to handle the files. With this package the effective DTD is defined
in $NHPPS/src/python/nhpps/dtd/dtd.py. The elements of the PDL specification are sum-
marize below.

PDL Elements

Child elements are denoted as required (no marking, ex:Description), 0 or 1 marked with ? (ex:
MaxExec?), 0 or more marked with * (ex:PostProcAction*), and 1 or more marked with + (ex:
Module+). Attributes can be required or optional as indicated by[]. If there is no/ indicated,
because there are child elements, then a matching closing tag is required.

<System>

TheSystemelement is used as the root element of the system level PDL file. The elements
in the System element provide default values in the event they are not defined in thePipeline
or Module elements. This provides the pipeline architect with a method of defining elements
to be used throughout all of the pipelines without needing toduplicate the definitions in each
Pipeline PDL file. This also has the effect of providing conventions for all pipelines in the
system. In particular, theExitCodeselements define conventions for module exit codes and
theTemplate elements provide templates for common types of types of modules.

children:Description, Directories, MaxExec?,MinDisk ?,ExitCodes*, Template*

<Pipeline system="" name="" poll="" [maxActive=""]>

ThePipeline element is the root of a Pipeline PDL file. Values which are notdefined at this
level are taken from theSystemelement. Each ’pipeline’ within the pipeline application has
an PDL file which declares a single pipeline element.

children:Description, Directories?,MaxExec?,MinDisk ?,ExitCodes*, Template*, Mod-
ule+

<Module name="" [type=""] [var=""] [maxActive=""] [isActive=""] [/]>

The Module element defines the actions a module executes. Missing children are supplied
from thePipelineor Systemlevel or DTD defaults.

children: Description?, Directories?, Trigger*, MaxExec?, MinDisk ?, PreProcAction?,
ProcAction?,PostProcAction*

<Description>

TheDescription tag provides a region in which to explain the purpose of the parent element.
This allows for a self-documenting programming style (if filled with meaningful information).

5

NHPPS PDL PL002

children: Any text description. This may be in restructuredtext syntax which can be used
by formatting tools such asplman.

<Directories trig="" data="" input=""/>

The Directories element is used to specify the locations of the directories the pipeline should
use to store its data, read input, etc... These are usually specified using environment substitu-
tion.

<MaxExec time="" status="">

The MaxExec element provides a means to constrain the amount of time thata Module’s
ProcAction is allowed to execute before being killed as a hung process. The status attribute
is the exit code that is normally handled by aPostProcActionaction. The time is specified
in the form days:hours:minutes:seconds (e.g. 0:1:0:0 is one hour).

<MinDisk space="" status="">

The MinDisk tag is used to specify the minimum amount of disk space required in order for a
Module’s ProcAction to be executed, as well as an exit code to returnin the event there isn’t
enough disk space available.

<ExitCodes id="" code="" severity="" [flag=""] [desc=""]/>

This tag associates an exit code with a logical identifier andassociated attributes. The iden-
tifiers and codes must be unique across all elements. The set of ExitCodes elements form a
mapping used in the PDL and the blackboard.

<Template type="">

The Template element provides a container for defaultTrigger , PreProcAction, ProcAction,
PostProcAction, MaxExec, andMinDisk to be applied to modules that don’t define these
elements. Templates have atype which is used provide multiple templates of different types.
A module is associated with a template by the type.

children:Description?,Trigger?,PreProcAction?,ProcAction?,PostProcAction?,Max-
Exec?,MinExec?

<PreProcAction>

A PreProcAction describes the actions that are to occur when aModule is executed, in order
to prepare for theModule’s ProcAction. There may only be one PreProcAction perModule,
however aPreProcAction may have several commands.

children: (Foreign | PlugIn | OSFUpdate| OSFUpdateParent| OSFWait | OSFClose|
OSFConditRemove| OSFFinal| OSFOpen| RenameTrigger | RemoveTrigger)+

<ProcAction>

The ProcAction element specifies the primary action theModule is responsible for. There
may only be a single action.

6

NHPPS PDL PL002

children: (Foreign | PlugIn | OSFUpdate| OSFUpdateParent| OSFWait | OSFClose|
OSFConditRemove| OSFFinal| OSFOpen| RenameTrigger | RemoveTrigger)+

<PostProcAction>

The PostProcAction describes the actions aModule should take after theProcAction , based
upon the value of theExitCode from theProcAction. There may be several PostProcActions
in aModule, to specify different actions for different types of results from theProcAction.

children: ExitCode+, (Foreign | PlugIn | OSFUpdate | OSFUpdateParent | OSFWait
| OSFClose | OSFConditRemove | OSFFinal| OSFOpen | RenameTrigger | Re-
moveTrigger)+

<Foreign argv=""/>

The Foreign element provides a pipeline architect the ability to launch programs as a valid
action within the pipeline. This allows the pipeline to callany program on the system allowing
flexibility in the design/coding of the scientific modules which compose the core code of the
pipeline.argv specifies the name of the command and any arguments.

<PlugIn argv="">

The PlugIn element provides the capability to call functions in the NHPPSPlugIns/actions.py
file. argv specifies the name of the function and any arguments needed.

<OSFUpdate argv=""/>

The OSFUpdate element allows the pipeline system to update the OSF blackboard of the
current dataset. Theargv specifies the module name or index and the blackboard value toset.
The value has the form[char|.][:status]where char is a character, the period specifies
the flag value is to be unchanged, and an integer ”status” value may follow using a colon
delimiter.

<OSFUpdateParent argv=""/>

The OSFUpdateParent element is like OSFUpdate except the dataset name is first modified
to trim the from the last hyphen. For example, a dataset of ”ab-c-d e-f” would be trimmed
to ”a b-c-d e”. This is a special used that depends on the dataset naming convention of the
pipeline application and is used when file triggers are received from daughter pipelines where
the file name is the daughter dataset name. Theargv is the same as for OSFUpdate.

<OSFWait argv=""/>

The OSFWait element is a combination of a conditional blackboard update and a decrement
counter in the counter field of a blackboard entry. When used on a module entry where the
counter has not be set it the flag argument is ”flag:counter” (e.g. w:$NCALL) which sets the
flag field to the specified value and the counter to the specifiedinteger value. Typically the
value is the environment variable NCALL set by the status return of a module. Subsequent
calls are of the form ”flag”. Each time the action is called thecounter field is decremented by

7

NHPPS PDL PL002

one without changing the current flag value. When the counterreaches zero the flag value is
set. This action is used to implement a map/reduce strategy.

<OSFClose/>

Closes the dataset on which thePipeline was processing. The dataset is not removed from
the blackboard.

<OSFOpen/>

Opens the dataset, in case it was closed, which thePipeline is trying to process.

<OSFFinal/>

The dataset blackboard entry is closed, in not done previously, and then removes it from the
blackboard.

<OSFConditRemove/>

The dataset blackboard entry is closed, if not done previously, but only removed from the
blackboard if the flags satisfy a pattern. Currently the pattern is fixed to be a ’c’ in the first
stage, any combination of ’c’, ’n’, or ’’ in the following stages, and ending with ’d’. In other
words, it will not remove blackboard entries that have otherflags which likely signify a error
of some kind.

<RenameTrigger argv=""/>

Renames the trigger file which is specified inargv to a new name, also specified inargv.

<RemoveTrigger argv=""/>

Removes the trigger file specified inargv.

<ExitCode val=""/>

Specifies an exit code which causes the actions in aPostProcAction to be executed. Theval
is that is matched against the current exit status from the ProcAction action or from MaxExec,
or MinDisk check.

<Trigger conditional="">

Specifies the required events which must occur before aModule will begin execution. The
conditional may be ”AND” or ”OR” for combining multiple requirement children. Note that
there may be multiple Trigger elements in a module and the module is triggered if any of then
is satisfied.

children: (FileRequirement | OSFRequirement| TimeRequirement)+

<FileRequirement directory="" fnPattern=""/>

Defines an event which will trigger when a file matchingfnPattern is found indirectory .
Typically the file name pattern will be generated with wildcards and environment variables
for the file event being checked.

8

NHPPS PDL PL002

<OSFRequirement argv="">

Defines a requirement which triggers when the status of aModule, named inargv, relates to
a value, also inargv, in a manner specified inargv. For example ”dirstart = x” would cause
the trigger to go off if status of module dirstart is ’x’.

<TimeRequirement start="" end="" interval=""/>

Defines a trigger which occurs at a specifiedinterval , betweenstart andend.

PDL Attributes

The following element attributes are defined within select NHPPS PDL elements. If no default is
shown then there is no default. The Boolean datatype may takeany of the the values ”True”, ”T”,
”true”, ”t”, ”Yes”, ”Y”, ”yes”, ”y”, ”False”, ”F”, ”false”, ”f”, ”No”, ”N”, ”no”, ”n”.

maxActive

If greater than 0, this specifies the maximum number of open OSF Datasets to allow at a time;
otherwise it is ignored. This is typically used to restrict only a single instance of a module to
run to avoid conditions where multiple instances might interfere with each other.

required: No, datatype: Integer, default: 0

system

Defines the system name for the pipeline system. This value isused to find the system level
PDL file. For example, if system=’Mario’ then the System level XML file is Mario.xml.

required: Yes, datatype: String

name

Specifies the name of either aPipelineor aModule.

required: Yes, datatype: String

poll

Specifies the polling time, or amount of time aModule sleeps between checking for triggering
events, in fractions of a second.

required: Yes, datatype: Float

root

Defines the directory which acts as the root in which the pipeline writes files.

required: No, datatype: String, default:
ENV($NHPPS DATA)/CAPS($Pipeline.system $Pipeline.name)

9

NHPPS PDL PL002

input

Defines the directory from which the pipeline gets its input data.

required: No, datatype: String, default:$Pipeline.Directories.root/input

obs

Specifies the directory into which the OSF Blackboard entries are written.

required: No, datatype: String, default:$Pipeline.Directories.root/obs

error

Reason unknown, its value is used as the NHPPSDIR ERROR environment variable.

required: No, datatype: String: default:$Pipeline.Directories.root/err

time

Sets the maximum amount of time aModule’s ProcAction has available to execute before
being killed as a hung process.

required: Yes, datatype: String, default:0:0:0:0

The format is D:H:M:S where D is the number of days, H is the number of hours, M the
number of minutes, and S the number of seconds.

status

Defines the exit code value to use, rather than an actual exit code, in the event aModule’s
ProcAction does not execute or is killed due to either insufficient disk space or it exceeded its
time limit.

required: No, datatype: String, default:0

space

Defines the minimum amount of disk space that must be available in order for theModule’s
ProcAction to execute.

required: Yes, datatype: String, default: 0

The format may include an expression for Python to evaluate or may end in k,K,m,M,g, or G
to represent the space is in kilo, mega, or giga bytes. When the PDL is compiled the space is
always converted to k.

isFailure

Specifies that theExitCodes contained within thePostProcAction representExitCodes of
error or failure conditions.

10

NHPPS PDL PL002

required: No, datatype: Boolean, default: False

isActive

Specifies whether or not theModule is active. If it is, it is in included in the pipeline PDL
tree, otherwise it is ignored.

required: No, datatype: Boolean, default: True

argv

Provides needed input to several commands.

required: Yes, datatype String

val

Defines an exit code that thePostProcActionwill respond to.

required: Yes, datatype: String, default:or default

conditional

Specifies whether all of the requirements within theTrigger element are required (”AND”)
or if any of them will do (”OR”). Those are the only values allowed.

required: No, datatype: String, default:AND

directory

Specifies the directory in which theFileTrigger looks for files which matchfnPattern.

required: No, datatype: String, default:$Pipeline.Directories.input

fnPattern

Specifies the search pattern to use within theFileTrigger when looking for trigger files.

required: Yes, datatype: String

start

Provides the starting date and time, meaning the event will not trigger until this point has past,
for aTimeRequirement.

required: No, datatype: String, default: Current Time

The format is ”YYYY-MM-DDThh:mm:ss”, where YYYY is the year(mustbe 4 digits), MM
is the month, DD is the day, hh is the hour, mm is the minute, ss is the second.

end

Provides the end date and time, meaning the event will not trigger after this point, for a
TimeRequirement.

11

NHPPS PDL PL002

required: No, datatype: String, default:9999-12-31T23:59:59

The format is ”YYYY-MM-DDThh:mm:ss”, where YYYY is the year(mustbe 4 digits), MM
is the month, DD is the day, hh is the hour, mm is the minute, ss is the second.

interval

Provides the interval at which theTimeRequirement will trigger betweenstart andend.

required: Yes, datatype: String

The format is ”D:H:M:S”, where D is the number of days, H the number of hours, M, the
number of minutes, and S is the number of seconds between triggering events.

id

The logical ID for an exit code. This must be unique across allExitCodeselements.

required: Yes, datatype: String

code

The integer exit code from a process exit to be mapped to a logical ID. This must be unique
across allExitCodeselements.

required: Yes, datatype: Integer

flag

A string of flag values to be used to interpret a blackboard entry where a module has a flag
value without an associated status code. If any of the characters in the flag value match a
blackboard flag the logical ID is associated with the module.The characters must be unique
across allExitCodeselements.

required: No, datatype: String

severity

A severity ID for the status ID. This need not be unique for theExitCode elements.

required: Yes, datatype: String

desc

A description of the status.

required: No, datatype: String

type

An identifier used in theTemplate andModule elements to match them.

Template: required: Yes, datatype: String

Module: required: No, datatype: String, default: Module

12

NHPPS PDL PL002

Appendix B: Example

The following is a very simplified example. Figure 1 shows a pipeline PDL file demonstrating how
compact the description can be with the use of templates. In this example there are two standard
modules where the first triggers on a file and the second triggers on the blackboard when when the
first completes.

Figure 1: Example pipeline PDL file.

<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<!DOCTYPE Pipeline SYSTEM "NHPPS.dtd">
<Pipeline system="ENV(NHPPS SYS NAME)" name="ex" poll="0.1">

<Description> Simple example. </Description>
<Module name="exstart" type="StartPipe"/>
<Module name="exdone" type="DonePipe" var="exstart"/>

</Pipeline>

An example system PDL file is shown in figure 2. This contains some exit code mappings, a
system value of timeout, and two templates for the types in the pipeline of figure 1.

Figure 3 is the compiling of the above files, usingpdlcompile. This shows the globalMax-
Exec merging, the addition of a default forMinDisk , the merging of the template contents, and
the variable substitutions from environment variables, PDL elements, and the var attribute.

13

NHPPS PDL PL002

Figure 2: Example system PDL file.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE System SYSTEM "NHPPS.dtd">
<System>
<Description> Example System </Description>

<ExitCodes id="PROCESSING" code="2" type="OK" desc="normal processing"/>
<ExitCodes id="COMPLETED" code="3" type="OK" desc="normal completion"/>
<ExitCodes id="FATAL" code="4" type="FATAL" desc="fatal error"/>
<ExitCodes id="TIMEOUT" code="5" type="HALT" desc="module timeout"/>

<!-- Set ’global’ maximum execution time to 1 hour (day:hr:min:sec) -->
<MaxExec time="0:1:0:0" status="TIMEOUT"/>

<Template type="StartPipe">
<Description> Defaults for StartPipe modules. </Description>
<Trigger>

<FileRequirement fnPattern="*.$pipetrig"/>
</Trigger>
<PreProcAction>

<OSFUpdate argv="$pipestart w"/>
<RenameTrigger argv="$EVENT NAME.$pipetrig $EVENT NAME.$pipeproc"/>

</PreProcAction>
<ProcAction>

<Foreign argv="StartPipe"/>
</ProcAction>
<PostProcAction>

<ExitCode val="COMPLETED"/>
<OSFUpdate argv="$pipestart c"/>
<RemoveTrigger argv="$EVENT NAME.$pipeproc"/>

</PostProcAction>
<PostProcAction>

<ExitCode val="default"/>
<OSFUpdate argv="$name f"/>
<RenameTrigger argv="$EVENT NAME.$pipeerr"/>

</PostProcAction>
</Template>

<Template type="DonePipe">
<Description> Defaults for DonePipe modules. </Description>
<Trigger>

<OSFRequirement argv="$var[1] == c"/>
<OSFRequirement argv="$name == "/>

</Trigger>
<PreProcAction>

<OSFUpdate argv="$name p"/>
</PreProcAction>
<ProcAction>

<Foreign argv="DonePipe"/>
</ProcAction>
<PostProcAction>

<ExitCode val="COMPLETED"/>
<OSFUpdate argv="$name d"/>

</PostProcAction>
<PostProcAction>

<ExitCode val="default"/>
<OSFUpdate argv="$name f"/>

</PostProcAction>
</Template>

</System>

14

NHPPS PDL PL002

Figure 3: Compiled PDL from the source files in figures 1 and 2.

<Pipeline system="ExampleSystem" name="ex" poll="0.10" maxActive="0">
<Description> Simple example. </Description>
<ExitCodes id="COMPLETED" code="3" type="OK" desc="normal completion"/>
<ExitCodes id="FATAL" code="4" type="FATAL" desc="fatal error"/>
<ExitCodes id="TIMEOUT" code="5" type="HALT" desc="module timeout"/>
<Module name="exstart" type="StartPipe" maxActive="0" isActive="True">

<Trigger conditional="AND">
<FileRequirement directory="example/trigger" fnPattern="*.extrig"/>

</Trigger>
<MaxExec time="0:1:0:0" status="TIMEOUT"/>
<MinDisk space="0k" status="0"/>
<PreProcAction>

<OSFUpdate argv="exstart w"/>
<RenameTrigger argv="$EVENT NAME.extrig $EVENT NAME.exproc"/>

</PreProcAction>
<ProcAction>

<Foreign argv="StartPipe"/>
</ProcAction>
<PostProcAction>

<ExitCode val="COMPLETED"/>
<OSFUpdate argv="exstart c"/>
<RemoveTrigger argv="$EVENT NAME.exproc"/>

</PostProcAction>
<PostProcAction>

<ExitCode val="default"/>
<OSFUpdate argv="exstart f"/>
<RenameTrigger argv="$EVENT NAME.exerr"/>

</PostProcAction>
</Module>
<Module name="exdone" type="DonePipe" maxActive="0" isActive="True">

<Trigger conditional="AND">
<OSFRequirement argv="exstart == c"/>
<OSFRequirement argv="exdone == "/>

</Trigger>
<MaxExec time="0:1:0:0" status="TIMEOUT"/>
<MinDisk space="0k" status="0"/>
<PreProcAction>

<OSFUpdate argv="exdone p"/>
</PreProcAction>
<ProcAction>

<Foreign argv="DonePipe"/>
</ProcAction>
<PostProcAction>

<ExitCode val="COMPLETED"/>
<OSFUpdate argv="exdone d"/>

</PostProcAction>
<PostProcAction>

<ExitCode val="default"/>
<OSFUpdate argv="exdone f"/>

</PostProcAction>
</Module>

</Pipeline>

15

