NOAO DPP Document PL 008

The NOAO High-Performance Pipeline System:
Architecture Overview

IT. Cline,?F. Pierfederici?R. Swaters?B. Thomas'F. Valdes

National Optical Astronomy Observatory
Data Products Program

November 16, 2006
To appear in ADASS XVI [P4.19]

'NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732
2NOAO LSST Program, P.O. Box 26732, Tucson, AZ 85732

3Department of Astronomy, University of Maryland, Collegarle, MD 20742

Copyright(© 2006 by the authors.

NHPPS Architecture Overview PL 008

Table of Contents

1 Introduction 2
2 Pipeline Management System 2
2.1 Pipeline Description Language e e e 2
2.1.1 ACHONS e e

212 Events.

2.2 PipelineManager 3
2.21 Module Manager e

2.2.2 Blackboards.

3 Services 4
3.1 NodeManager e
3.2 Directory Server. e 4
3.3 Pipeline Selection Utility e 5

NHPPS Architecture Overview PL 008

Abstract

The NOAO High-Performance Pipeline System is an infrastmgowhich provides event driven
execution of scientific data processing pipelines withimstriduted parallel system. The architec-
ture includes the Flipper Pipeline Management System f@lerici 2005) and an assortment of
services which manage hardware resources, calibratioarigs, and metadata databases. The
pipeline system infrastructure is separate from the pigedipplications which are built from host-
callable programs and data processing systems. In thig pagpdescribe the components of the
pipeline system. The NOAO Mosaic Pipeline utilizes thistegsand is described in companion
papers (Swaters & Valdes 2006, Valdes & Swaters 2006).

Keywords: techniques: image processing

NHPPS Architecture Overview PL 008

1 Introduction

Automated data processing pipelines are needed to harel&ghificant data volume produced
by the astronomical instruments of today and those propfasdbe future. NOAO has developed
a pipeline infrastructure designed to meet the needs ofdtiereomical community. We call this
infrastructure the NOAO High-Performance Pipeline Sys(BitdiPPS).

The NHPPS is composed of a Pipeline Management System (PMS) eollection of services
which provide communication and management functionalioss a distributed multi-node en-
vironment. In section 2 we discuss the PMS and its compon&etstion 3 provides an overview
of the various services used by our system.

2 Pipeline Management System

The core of the NHPPS is the PMS which is responsible for eéxggthe actions of a pipeline
when the proper conditions are meet. The NHPPS PMS was gmcionder the name FLIPPER.
It was originally based on the OPUS system (Rose et al. 1996%¢ at the STScl; however, it
has been updated to take advantage the XML language anduoerdide overall complexity of
system configuration. The PMS manages the individual pipslivhich together create a Pipeline
Application.

The components of the PMS include an XML grammar (the Pipdliascription Language or
PDL) which describes pipelines to the PMS, a Pipeline Managpch is the process represent-
ing an instance of a pipeline, Module Managers which perftrenactions of the pipeline, and
Blackboards which are used to post messages about the stalatmset processing.

2.1 Pipeline Description Language

We have developed a PDL using the XML language to describaipgs and their actions to the
Pipeline Management System. The PDL provides easy confignmaf several features of the NH-
PPS such as process resource constraints (minimum recviaddble disk space and maximum
execution time), three different classes of pipeline adi¢(Setup, Primary, and Cleanup) which
are executed when certain events have occurred (Time Stdé&ys, and the special ExitCode).

A pipeline is a collection of modules that defisgitings andactions which are executed when
certainevents occur. The modules typically reference each other withiipalme; for instance, to
specify that a previous module must be completed beforéhanatodule may start. Each pipeline
within the Pipeline Application is defined within its own XMile.

2.1.1 Actions

Actions perform the work of the pipeline. The NHPPS is desdjto perform up to 3 different sets
of actions within a module: Setup, Primary, and Cleanup.

Setup actions are performed before the Primary action amve $e setup the execution envi-
ronment for the Primary action, perform bookkeeping action the blackboard, etc.

NHPPS Architecture Overview PL 008

The primary action is the action the module is written to exec There is only one Primary
action in each module and it is typicallyFareign action which executes a program or script via a
command line.

The cleanup actions are sets of actions, one of which mayuexéased upon the Exit Code
event after the Primary action is completed.

2.1.2 Events

The events which trigger the start of execution for a moduéeTame, File, and Status events.
There is a special type of event, the Exit Code event, whichimeaised to trigger optional Cleanup
actions in the module.

Time events repeat at fixed intervals between a start andierg] br occur only once at a
specified time.

File events occur when a file matching a search pattern igifadtiin a given directory. These
files are called 'trigger files’ within the NHPPS and are a vesgful method for starting the flow
of execution within a pipeline due to their ease of creation.

Status events occur when the blackboard status for a plartitwdule matches a certain value.

Exit Code events are generated when a modules primary astioompleted. This value is
typically the value returned from the modules primary attih may be used to instruct the module
to perform a set of cleanup actions, based on the value ofthé€Bde. This functionality allows
a module to execute one of a number of different sets of cleautions based upon the Exit
Code. By specifying different sets of cleanup actions, tleate is able to handle cases where the
primary action ended successfully, with a partial resulfaded.

2.2 Pipeline Manager

Each instance of a pipeline in a Pipeline Application hasreesponding Pipeline Manager (PM).
The PM is primarily responsible for parsing its pipelines Kifille, setting up Module Managers
for each module in the pipeline, providing scheduling gomato the Module Managers, and
creating shared Blackboards.

221 Module Manager

Each instance of a module within a pipeline has an assocMtetlile Manager which performs
two key tasks 1) checking that the events necessary for tloell@to execute have occurred and 2)
setting the environment and executing the modules actibresthe required events have occurred.
For the pipeline architect the main function of the MM is teedte a desired action which is
typically a program. The program may be specific to a singldutebut often is more generic. In
either case the program needs context information wherritns The module manager provides
this in two ways. Programs may be called with arguments asifigukin the pipeline description
language (PDL). The MM also sets a number of standard enwieon variables. These include
the dataset name or identifier, the pipeline name, the madutee, the type of event, the module’s

NHPPS Architecture Overview PL 008

blackboard flag when itis triggered, the start time, the @ssddentification, and logical directories
associated with the pipeline.

2.2.2 Blackboards

Blackboards store messages posted by the MMs. These messaygée requests for other MMs
to begin processing data, status of current data-set @iocg®r even the status of the MM itself.
Blackboards are visible tall of the MMs in the pipeline, and therefore MMs are able to, and d
‘communicate’ with each other by posting and reading me=sag the blackboards.

The PM creates two distinct blackboards in memory, which opionally be mirrored on disk.
These two blackboards track 1) the progress of individuta-dats through the pipeline and 2) the
status of pipeline modules to include, among other thingsether they are active or inactive,
which data-set they are processing, and when they begaagsiag.

As we have mentioned, these blackboards are shared amowoigtiadd MMs in the PM. This
allows each module to check the status of the other moduléipipeline.

3 Services

The targeted execution environment for the NHPPS is a moltie processing cluster. The ser-
vices described in this section enable the NHPPS to takensalya of a distributed processing
environment.

3.1 Node Manager

The NM is primarily responsible for starting, pausing, masug, and stopping pipelines. Addi-
tional tasks include tracking available resources on a el communicating with the Directory
Server (DS) to locate other available NMs within the pipelprocessing cluster.

A Node Manager (NM) is started on each node which is a memb#reopipeline processing
cluster on which the Pipeline Application is run. At starttipe NM contacts the DS to register
itself as available for processing datasets. Note, thigireg the DS to be running first. If no DS
is running then the node will be unaware of other processodgs, however it may still run a
pipeline application although processing will be resgttto a single machine.

3.2 Directory Server

The Directory Server (DS) is responsible for maintainingstdf the nodes within the processing
cluster on which the NM has been started. The NM’s occadipmall need to determine which
nodes are in the processing cluster and this list is senetblM when requested.

NHPPS Architecture Overview PL 008

3.3 Pipdine Selection Utility

The pipeline selection utilitypi pesel ect , is a key tool in building a distributed pipeline. This
tool communicates with the DS and NM servers and is most &etiyicalled from within pipeline
modules to discover other available pipelines, rank tlesiources, and provide trigger information.
In application a module in a pipeline wishing to trigger drestpipeline must first discover the
instances of the pipeline. It specifies the name of the dipipeline, whether a list of the available
pipelines is to be returned or a ranked list for a desired raermobinstances, and the required disk
space available to the pipeline. In addition to the argustird utility uses a configuration file that
currently defines whether a desired pipeline may be anywihdiee processing cluster, must be
on the same node as the calling pipeline, or must be on anyagtbdethan the local node.

References

Pierfederici, F. 2005, ASP Conf. Series, 347,614
Rose, J., et al. 1995, ASP Conf. Series, 77, 429
Swaters, R. and Valdes, F. 2006, to appear in ASP Conf. Sdr.[R¥.20]
Valdes, F. and Swaters, R. 2006, to appear in ASP Conf. Sdr.[R¥.21]

