NOAO SDM Document PL019

Transforming NHPPS Pipeline Applications into Grid
Applications

F. Valdes

National Optical Astronomy Observatories
Science Data M anagement

Draft: March 26, 2010
V1.0: June 29, 2010

'NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732

Copyright(© 2010 by the authors.



NHPPS Grid Applications PLO19
Table of Contents

Pur pose of this Document 2
1 Introduction 3
2 Wrapping an NHPPS Pipelineasa Grid Service 4
3 Pipeinesvs. Module 4
4 The Advantages 5
5 The Disadvantages 5
6 Conclusion 6
7 Status 6




NHPPS Grid Applications PLO19

Abstract

This document describes a powerful way to INEAO High Performance Pipeline System
(NHPPS) pipeline applications (PA) asgrid applications (GA). For the ODI Pipeline Project this
consists of wrapping complete NHPPS pipelines as OGCE Gaidi&s using a single wrapper
command supporting standardized input and output parasnéibis requires dynamically running
the NHPPS execution framework internally to the wrapper m@amd so that it becomes a totally
self-contained executable. The advantages of this aothreare identified.

Keywords: NHPPS, OGCE, pipelines




NHPPS Grid Applications PLO19

Purpose of this Document

The purpose of this document is to foster discussion abamuttbdransform NOAO/NHPPS work
into an ODI/OGCE workflow. This document advocates the aechural vision of the NOAO ODI
pipeline development team to the ODI Pipeline/Archive Ecj




NHPPS Grid Applications PLO19

1 Introduction

This document describes a powerful way to 0§8AO High Performance Pipeline System (NH-
PPS) pipeline applications (PA) asgrid applications (GA). An NHPPS PA is a hierarchy of pipelines
which perform a complex workflow using coarse-grained psees and data parallelism pfpeline

in this context is a smaller workflow, or conceptually a segyiconsisting of a number sfages
which are executed in a possibly parallel order on a singtie. A pipeline service operates on
a particular type of dataset and there can be multiple ies&®neach operating on independent
datasets, running on the same node or on a distributed setlekn Typically these instances are
running in parallel. The stages in a pipeline are lower leashponents, called modules which
are typically scripts that perform a step of an algorithm arse input/output context varies
depending on how they interact with other stages. Modulegyguically in a scripting language
(e.g. python or IRAF) that provide control flow and accessaimpiled executable elements, called
tasks.

The NHPPS execution framework is defined primarilyNgde Manager (NM) and Pipeline
Manager (PM) processes. The framework orchestrates the work flow basedsorts rather than as
a pre-definediirected acyclic graph (DAG). The events and how they trigger steps in the workflow
are described by an NHPRfeline description language (PDL).

In the context in which the NHPPS execution framework isently used there is one NM for a
node which controls a PM for each pipeline which may run omitae. The PM is the one respon-
sible for scheduling all the stages of a pipeline for as maataskts as desired. These processes
communicate with sibling process on other nodes which almwpipelines taall other pipelines
as services on the same node or other nodes for differerdedataln this configuration the PA
forms a network of pipelines across different nodes with @achnode and the workflow implicitly
defined byevents and apipeline selection function that provides a list of available pipelines across
the network to be called. The proviso in this architecturthesNM and PM processes are first
started across a known set of nodes which can communicdtesadh other.

In a GA, the architecture is typically a, potentially, veeyde pool of nodes which execute
pieces of a workflow independently and as leaf nodes retgnr@sults to a central orchestration
machine. The orchestration is defined by a DAG descripticsome language. In particular, we
wish to target an OGCE workflow application using the workflomnstructs of that system. The
grid nodes do not need to communicate and pre-existing dasemwers are not used.

The question addressed in this document is how can an NHPP® RAned into a typical GA.
One answer might be to take the atomic tasks or stages in tloeiRs€ the control of the NHPPS
framework as described by the PDL and orchestrate them asd@deGeibed by a DAG. However,
the approach described here is to include the NHPPS exadutimework in GA components,
calledgrid services, so that it is the pipelines that are wrapped and executeddnagdes. In brief,
mapping each pipeline in an NHPPS PA to a single grid senoacencand thereby maintaining the
same overall workflow design. This has a number of advantdgssibed below but two of which
are 1) making use of the best features of both frameworks pnthRing the wrapping simpler by
not having to translate the PDL into a complex DAG.

Before talking about the advantages we make this approaarer! by describing how this

3



NHPPS Grid Applications PLO19

wrapping is done.

2 Wrapping an NHPPS Pipelineasa Grid Service

The key transformation needed is to change the NHPPS frarkdmwon node-centric, where long-
lived and intercommunicating NMs and PMs process datasethey are available, tdataset-
centric, where each dataset spawns its own isolated stand-alonendNPlsl(s) to process it and
quit when the work is completed.

An important point is that there can be more than one pipdiiee PM) within an NHPPS
wrapper such that a “higher level” pipeline makes use of an@are subpipelines in a possibly
parallel fashion. The only difference from the non-GA coufaion is that all subpipelines must
execute only the same machine. This allows decompositiandaitaset into parallel subpipelines
which can efficiently utilize multiple-cores even thougldividual stage modules can not. Note
that this is only done when desired, the GA DAG can still bedusken the dataset pieces are large
and benefit from use of a larger pool of grid nodes. It is up ®RA/GA designer to define the
workflow appropriately.

Most of the flexibility to transform the NHPPS framework inghvay was already built-in to
the system. The primary tweak needed was to allow multipleshid/coexist on the same node as
the same user (the NHPPS framework was already indepengerseln). Each independent NM
then manages its own set of PM. The way this tweak is accohgaliss to use different NM ports
within the wrapper script.

3 Pipelinesvs. Module

A question that comes up is why not use modules directly ab ggivices? This is essentially
a definition and implementation question. No matter whatlle¥ NHPPS software is used one
needs to provide a wrapper to transform the software to nthtchrequirements of the grid service
execution framework.

For NOAO developers a module has generally been consideredternal component of a
pipeline. As such the environment in which it executes aedriput and output data are dependent
on what come before and after. Therefore individual wrappeyuld need to be created for each
module. An advantage of wrapping NHPPS pipelines is thatglestandard wrapper can be used.

A point to recognize is that pipelines, in the NHPPS sense beawritten with as many or as
few modules as desired not counting some standard housege®@ipctions that essentially are
what provide the standardization of the input and outputfpipeline. So if a single significant
science module is desired it could be wrapped as a short Nigipleine and then as a grid service.

The considerations are then how fine the pipeline applioatiorkflow should be decomposed
(i.e. how many pieces) and whether including the NHPPS di@tiramework in the grid service
is a problem.




NHPPS Grid Applications PLO19

4 TheAdvantages

Below is a partial list of the advantages to making grid aggilons be complete NHPPS pipelines.
However, | would first like to emphasize the main advantaga® imy perspective.

NHPPS pipelines are functionally designed as user levepom@nts. In other words, to do a
particular processing operation that an astronomer woasilyeunderstand. As part of this the
inputs and outputs are simple and standardized. This demia list of data to be used with a list
of final data products along with various log information afpwt. Because of this standardization,
wrapping of a pipeline for a grid application is very simptelacan be done with a single wrapper
command.

In contrast, the stages in a pipeline are sometimes jusioiokkeeping, setup, or perform only
part of a algorithm. Different stages have different fuoes and, hence, input and output. One
could write larger stages (with loss of parallelization iftetity) but ultimately this would result in
producing a single module that is functionally the sameglais the pipeline.

e The stage modules are generally too fine-grained for gemadcefficient reuse
while the pipelines are good candidates.

e Understanding and documenting the workflow logic at the Ipipdevel is eas-
ier and more appropriate for most people. A recently addedludty to embed-
ded well-formatted documentation in the PDL encouragesi glmcumentation and
makes it easy to maintain and extract.

e The number of things to wrap in a complete workflow applicat®on the order of
20 pipelines rather than of order 200 stages. It should be&abthat decomposing
down to the level of tasks (such as each IRAF command) is oilteofjuestion.

e The ability to parallelize within the GA service componehy, processing more
than one dataset at a time in an NHPPS wrapper service, wilave utilization of
multiple cores.

e Handling input and output in OGCE at the pipeline level is enappropriate and
standardized while the internals of communications betwstages is varied and
more complex.

e Much of the control flow that would be harder in a GA DAG, i.eteahate paths
through the workflow depending on the data, are taken carg tifeoNHPPS event
flow and PDL.

e The NHPPS developers can more easily create workflows fordotNHPPS ded-
icated cluster and an OGCE grid application.

5 The Disadvantages

The main aspect of using NHPPS pipelines as grid servichatisite NHPPS execution framework
is included in the service. One might worry that this is ir@éfint. The NHPPS framework is fairly




NHPPS Grid Applications PLO19

light-weight so what is left is a trade-off between the oaxth of the framework and the work done
within the service. An advantage noted above is that an NHitpSine can contribute to better
efficiency by doing more work and making coarse-grained dsauwtiple cores with multiple
asyncronous modules and independent datasets.

So the case where there would be a disadvantage is when eesdoas very little work. Many
modules in NHPPS pipelines are in this category which is whyauld not be a good idea to
use them as separate grid services. There are a few modatetotkignificant work but then the
framework is of lesser consequence and it would become aebetween the customized work of
wrapping the module directly to eliminate the small ovethebthe NHPPS framework and using
the standardized pipeline wrapper for a pipeline of esaiytbne module.

The other potential concern is that one has to consider tti¢i@ukl failure modes that might
occur from the framework. The framework is extremely rdiadtt this point but a pipeline has the
potential failure of stopping after a module failure thatubneed to be caught.

6 Conclusion

The overhead of including the NHPPS execution frameworlkaaisqf a grid service is less signifi-
cant than its ability to efficiently utilize the resourcesagjrid node and to standardize the wrapper.
It also has the advantages of reducing the number of gridcesrto a number that is suitable for
potential reuse and understood by users as opposed to readhileh often are more fine-grained
because they form part of an algorithm.

Concerns about the loss of flexibility to extract a particflenctionality for use in other work-
flows is ultimately part of the design of the pipeline sersicather than blindly attempting to
provide every module in a pipeline application as a gridiservif a particular science module is
large enough and significant enough to be a separate grictsetrcan be individually wrapped
either outside of an NHPPS pipeline or as an NHPPS pipelittejust a few modules.

/ Status

All the tweaks needed to run stand-alone and independenBI$Hfpelines on nodes with nothing
but access to the code stack and standard Linux have beerdatechand demonstrated. A single
OGCE-aware command (one that understands how to use OGU&aimg output parameters) has
been written to wrap any NHPPS pipeline. The command loddes li

nhppsapp confidile pipelinename othempipelines inputlist

and the standard outputs, in OGCE format, include the outpiat list, process logs, metadata
files, etc.




