
NOAO SDM Document PL027

The NHPPS Simple, Light-Weight Message Protocol

F. Valdes1, F. Pierfederici1, M. Miller 1, D. Scott1

National Optical Astronomy Observatories
Science Data Management

V1.0: January, 2012

1NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732

Copyright c© 2012 by the authors.



NHPPS Message Protocol PL027

Abstract
The NOAO High-Performance Pipeline System (NHPPS) uses a common simple message pro-

tocol for communication between various clients and servers. The message protocol is designed
to be very simple and light-weight for ease of implementation in various languages. The proto-
col is simple ”KEYWORD = VALUE” text which is currently transported by standard sockets in
the NHPPS applications where it is used. This document provides the specifics for the message
protocol and serves as an ”interface control document” for those applications.

Keywords: NHPPS, messaging, ICD

1



NHPPS Message Protocol PL027

1 Description

NOAO High-Performance Pipeline System (NHPPS) clients andservers communicate via a sim-
ple, light-weight, text-based message protocol. The messages are transported via standard sockets.
The protocol and transport makes writing and capturing messages in applications simple in any lan-
guage. It is this simplicity, and the light-weight nature ofthe applications, that justifies a custom
NHPPS protocol.

NHPPS includes API classes for python applications. One class is for composing and decoding
the message format as described below. Another class, layered on the format, provides the standard
socket-server functionality. This is for messages that usethe reserved ”command” parameter to
specify an interpreter method for the message; i.e. like a remote procedure call. Each command
value is then a message type where other elements of the message provide parameters specific to
that type.

So while the message protocol does not require use of the command parameter, all current uses
of the protocol in NHPPS applications consist of such messages to define the type and interpreter
to use. Note also that the message protocol need not be transported only through sockets, though
that is also currently the case for all applications.

There is nothing special about the message protocol and other messaging formats and systems
could be used. The purpose of this document is to describe thecurrent system in use in NHPPS
applications. We also note that NHPPS does make use of a more complex remote procedure call
system, PYRO, within the python-based pipeline managers for the more demanding distributed
pipeline processing framework.

1.1 Format

• Messages consist of lines of text in ”KEYWORD = VALUE” form.

• Messages are terminated by a line with just EOF (case-insensitive).

• Lines are delimited by newlines.

• Blank space around the equal sign is optional.

• Anything after the value is ignored.

• Blank lines and lines beginning with ’#’ are ignored.

1.2 Keywords

• Keywords may not contain whitespace, equal, or quotes.

• Keywords may be arbitrarily long.

• Whitespace before the keyword is allowed.

• Keywords are case-insensitive.

2



NHPPS Message Protocol PL027

• Reserved keywords are:

COMMAND: identifies the message interpreter

HOSTNAME: identifies the client host

STATUS: return code from call (numeric and string description)

LABEL: user-defined field

1.3 Values

• Values can be arbitrarily long.

• Values with whitespace must be quoted.

• Values of ”” or ” (a zero-length string) are allowed.

• Opening and closing quotes must be of the same type.

• A backslash be used to escape a quote that matches an opening quote, a newline or a ’\’
character in a string.

• Quoted strings may used within a quote-delimited value provided the type of quote (double
or single) differs from the value’s opening quote or by usinga backslash:
KEY = ’A B C ”DEF” \’FOO’

3



NHPPS Message Protocol PL027

2 Examples

Here we give one quick example. The GETCAL client requests the most appropriate calibration
from a Calibration Manager server. The request requires providing various parameters about the
image to be calibrated such as the time of the exposure, the specific detector, the filter, etc.

This example illustrates a couple of things mentioned earlier. First the multi-language aspect
where the GETCAL client is written in IRAF/SPP and the Calibration Manager is written in python
and makes use of the python library classes summarized above. The other is that the COMMAND
parameter is used by the python library class to call a methodmgr getcal (where the mgris auto-
matically added) in the Calibration Manager application. Another interesting point is that to gener-
ate this example the socket connection specified in the GETCAL client was replaced by STDOUT
(which the client interprets in the obvious way) to simple print the message to the terminal. This
is useful for debugging the client.

Figure 1: Message from IRAF GETCAL client to Python Calibration Manager

COMMAND = getcal
CLASS = ’dflat’
MJD = ’55931.01234’
DMJD = 3.
DETECTOR = ’like mosaic1’
IMAGEID = ’ccd1’
FILTER = ’V’
QUALITY = 2.
MATCH = ’like 1 1’
VALUE = ’’
EOF

4


