
NOAO SDM Document PL101=ODI001=CDR-02

ODI Automatic Calibration Pipeline Application Design

F. Valdes1

National Optical Astronomy Observatories
Science Data Management

October 13, 2011

1NOAO Data Products Program, P.O. Box 26732, Tucson, AZ 85732

Copyright c© 2011 by the authors.

ODI AuCaP Application Design PL101=ODI001=CDR-02

Table of Contents

1 Overview 1

2 NHPPSAPP: The Host Wrapper Layer 2

3 NHPPS: The Node Orchestration Layer 2

4 The Computation Scripting Module Layer 3

5 The Core Toolkit Layer 4

List of Tables

ii

ODI AuCaP Application Design PL101=ODI001=CDR-02

1 Overview

The ODI Automatic Calibration Pipeline (AuCaP) is a workflowthat runs under the control of the
Open Grid Computing Environment (OGCE) system. As the OGCE name indicates, the compu-
tation takes place in a grid computing environment. The computation software orchestrated by
OGCE for the automatic calibration of ODI data is what is herein called the ODI AuCaP Appli-
cation. In this document we describe this application software that is layered under the OGCE
system ([6], [1], [3]).

As a grid application interface to OGCE, the AuCaP software appears as simple host commands
with command arguments mapping to parameters supplied and consumed by OGCE as parameters.
The complexity of the design appears in a) how the overall calibration logic is decomposed into the
host commands to achieve efficient, data parallel executionand b) the details of what is inside the
host commands. The workflow design is described in other documents such as [7]. The algorithms
and how they address the ODI science requirements is given in[2]. The subject of this document
is software that makes up the host commands executed by the OGCE workflow.

There are four levels of software structure in the AuCaP application design. At the top level is
a wrapper script that creates the host command interface (§2) for OGCE. Within this wrapper there
is a compute node orchestration infrastructure that manages the processing across the cores of the
node and supports the modularization of the computation into a number of steps (§3). Each of these
modular steps is a host command processing some piece of the data and performing some specific
operation (§4). These steps are almost entirely scripts in a scripting environment; mostly IRAF
command language (CL) scripts with some Python scripts. Finally within the scripting language
are calls to the core processing tools (§5). This structure is straightforward but we also illustrate it
by the onion layer diagram in figure 1.

(§2) NHPPSAPP

(§3) NHPPS

(§4) HOST COMMANDS:
IRAF & PYTHON SCRIPTS

(§5) TOOLKIT: IRAF

Figure 1: AuCaP Onion Layer Diagram

In the case of any Python scripts the core tools would be the libraries and applications developed
by others for astronomical image processing.

Since most of the steps are IRAF CL scripts, the core tools arethe large suite of astronomical
data processing tools provided by IRAF. Note that a key element of this application design is use of

1

ODI AuCaP Application Design PL101=ODI001=CDR-02

the decades of software development within IRAF for image processing as opposed to developing
new core computational tasks. However, when no appropriatecomputational tool is available for
an ODI-specific calibration step it will be developed by the AuCaP developers. These will be
typically be as new IRAF tasks to take advantage of the IRAF core libraries.

2 NHPPSAPP: The Host Wrapper Layer

Rather than write custom wrappers for each OGCE workflow element (calledservicessince they
are packaged into web services by OGCE) the architecture makes use of a single generic wrapper
converter script called NHPPSAPP. As described in§3, the node orchestrator is the NOAO High
Performance Pipeline System (NHPPS), hence, the name.

In practice there are simple wrappers around NHPPSAPP to simplify the argument passing
and give mnemonic names to the services. For the purposes of this document we consider these
wrappers to be part of the OGCE environment.

NHPPSAPP provides all the conversion between OGCE input andoutput parameters and the
standard structure of NHPPS pipelines; the pieces of the end-to-end workflow design. This wrapper
sets up and runs the NHPPS orchestration system and triggersthe processing with the appropriate
input data. When the processing completes the orchestration is shut down and the results formatted
and passed on as output OGCE parameters. Note that these results include data products, log
information, and exit status information.

While the logic of running the NHPPS system as a self-contained host command is non-trivial
the wrapper is still a small piece of software (500 lines of C-shell scripting) plus environment
setting source files.

A notable aspect of this wrapper interface architecture is that the simple host commands that run
NHPPS pipelines make them suitable for easy reuse. This might be in alternate OGCE workflows
or for export (though all the requisite software, e.g. NHPPS, IRAF, and Python, would also need
to be exported and installed as well).

3 NHPPS: The Node Orchestration Layer

The Node Orchestration Layer provides workflow management within a single high-performance
compute node as opposed to workflow management across grid nodes. Because these nodes gen-
erally have multiple CPU cores, efficient use of a node requires more than a simple script of steps.
At one extreme, one could make use of complex multi-threadedapplications. However, as noted
in §5 we will make use of existing, general purpose, image processing toolkits that are not typi-
cally single large applications nor, often, multi-threaded. In particular, the IRAF toolkit consists
of non-threaded, general purpose tasks.

To make efficient use of multiple cores with a toolkit consisting of general purpose commands
requires making use of data parallel threads at the operating system level. This means that the
parallel sequencing of steps, both functionally – different independent steps on the same data
element – and data – different data elements on the same step –requires an orchestrator. We

2

ODI AuCaP Application Design PL101=ODI001=CDR-02

have found one of the best orchestrators for this purpose is the NOAO High Performance Pipeline
System (NHPPS). This is described in detail in [4]. As noted in the reference, a nice feature
of NHPPS is that the steps forming a pipeline are simply described in an XML-based pipeline
definition language (PDL).

In a nutshell, NHPPS is an event-driven workflow orchestrator, where steps are executed based
on prerequisite conditions such that the occurrence of the conditions for a particular step is what
is meant by an ”event”. As long as the prerequisite conditions are met any number of steps and
instances of steps on pieces of data may be executed. The running of multiple executions is handled
by the operating system that can make appropriate use of cores, memory caches, and swapping
strategies. With enough parallel steps and parallel data elements this orchestrator, which also
provides throttle control to avoid swap bottlenecks when there are too many processes, has been
found to be extremely efficient at utilizing multiple cores with independent granular steps typical
of the logic required by AuCaP.

Let us consider an example of how the orchestrator supports the processing. ODI exposures
are distributed across a set of grid nodes with one exposure per node. The host command is to run
the OTA calibration steps of bias subtraction and dome flat fielding (actually other things would
be done but this is for illustration). The pipeline workflow divides up the exposure by OTA. Each
OTA is handled as a separate sub-workflow. NHPPS sequences the steps of bias subtraction and
dome flat fielding for each OTA in parallel. The 64 ”threads” are then being executed by the OS
across the cores, such as a 12 core node. The NHPPS throttlingwould keep the number of OTAs
being handled at one time to something like 12 instances. See[5] for an actual OGCE workflow
demonstration similar to this example and based on the AuCaPlayers presented here.

There are two key software components forming this layer. These are a node manager that is
the key element and one or more pipeline managers. These worktogether to interpret the PDL,
handle all the conditions and actions, and execute the host command modules.

As an additional aspect of this architecture, though not thedriver, is that by developing the
various AuCaP services under NHPPS and wrapped by the NHPPSAPP wrapper, it is simple to run
the entire AuCaP workflow as a purely NHPPS application on a local cluster (NHPPS also provides
cluster orchestration through the node managers working together). This makes development and
testing easier and allows for alternate processing then just in a grid environment.

4 The Computation Scripting Module Layer

An NHPPS pipeline consists of a set of steps, also call modules or stages, that perform some macro
piece of the workflow on a particular type of dataset. These steps are orchestrated by NHPPS, as
describe earlier, based on events. NHPPS executes a commandwhen the prerequisite conditions
are met. This command can either be a host command or a plug-inof the NHPPS system. In most
cases the command is an host command.

The host commands in AuCaP are predominantly composed of IRAF executable tasks (see
§5). IRAF provides not only this toolkit of image processing executables but a framework and
scripting environment to easily tie them together through one of the IRAF command languages into

3

ODI AuCaP Application Design PL101=ODI001=CDR-02

a logical pipeline module. For AuCaP we use the classic IRAF CL for most of the scripting. Unlike
interactive astronomical use, where the CL is both a sessioncommand environment and interpreter
of scripts within the session, AuCaP modules use the CL as a host command interpreter shell; a
Unix execution feature often referred to aa hash-bang script. The modules begin with a hash-bang
directive to run the IRAF CL interpreter followed by the IRAFscript. The CL provides a command
line argument functionality to deliver host command line arguments to the script environment.
These IRAF scripts appear just like any Unix host command found in the execution path.

One thing to understand about the the AuCaP application design is that it is also modular in
the sense that the connection between steps is through files and independent executions. In other
words, there is no use of shared memory. As noted earlier, theuse of an orchestrator that can
manage many processes in parallel makes the I/O penalty lesssevere and the processing is still as
efficient as one can have without rewriting the steps and underlying software to use shared memory.

5 The Core Toolkit Layer

The ODI detectors and mosaic focal plane are not fundamentally different from other astronomical
CCD cameras. Therefore, there is no need to redevelop tools already widely used for calibrating
data from such instruments. There are a number of toolkits one can chose from. Because NOAO
will develop the AuCaP, the logical choice is the NOAO developed IRAF toolkit. Not only is it the
logical choice but it is one of the most widely used and well-tested toolkits in astronomy.

IRAF provides a toolkit of image processing executables consisting of millions of lines of com-
piled and script code and people-decades of developer time.There is not much more to say about
the toolkit. Though most of the pipeline makes use of existing IRAF tasks, some written as gen-
eral image processing or standard CCD reduction tools and some written for other NOAO pipeline
applications such as for the NOAO Mosaic Imagers, there willbe a few tasks that will need to
be written expressly for ODI. These will also be developed asIRAF executables in order to fit in
with the other tools, to make use of the many core libraries such as for masks, and to be exposed
for standard interactive IRAF use. The only significant toolthat can be forecast as needing to be
developed is to convolve static calibration exposures by the unique shift history of OTA-guided
exposures.

4

ODI AuCaP Application Design PL101=ODI001=CDR-02

References

[1] R. Singh. ICD: Workflow and Pipeline Interfaces for Tier 1Processing. ODI CDR Document
CDR-09, ODI-PPA, Oct 2011.

[2] R. Swaters and F. Valdes. ODI Automatic Calibration Pipeline Design Elements. ODI CDR
Document CDR-18, ODI-PPA, Oct 2011.

[3] F. Valdes. Transforming NHPPS Pipeline Applications into Grid Appli-
cations. Draft SDM Pipeline Document PL019, NOAO/SDM, Jun 2010.
http://chive.tuc.noao.edu/noaodpp/Pipeline/PL019.pdf.

[4] F. Valdes, T. Cline, F. Pierfederici, B. Thomas, M. Miller, and R. Swaters. The NOAO High-
Performance Pipeline System. SDM Pipeline Document PL001,NOAO/SDM, Oct 2006.
http://chive.tuc.noao.edu/noaodpp/Pipeline/PL001.pdf.

[5] F. Valdes and S. Marru. The ODI Demonstration Tier 1 Pipeline. Draft SDM Pipeline Docu-
ment PL021, NOAO/SDM, Sep 2010. http://chive.tuc.noao.edu/noaodpp/Pipeline/PL021.pdf.

[6] F. Valdes and S. Marru. The Marriage of Mario (NHPPS) and Luigi (OGCE). In I. N. Evans,
A. Accomazzi, D. J. Mink, & A. H. Rots, editor,Astronomical Data Analysis Software and
Systems XX, volume 442 ofAstronomical Society of the Pacific Conference Series, pages 211–
+, July 2011. Also http://chive.tuc.noao.edu/noaodpp/Pipeline/PL023.pdf.

[7] F. Valdes and R. Swaters. ODI Pipeline Data Flow Design. SDM Pipeline Document PL013,
NOAO/SDM, Oct 2009. http://chive.tuc.noao.edu/noaodpp/Pipeline/PL013.pdf.

5

